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List of symbols

Scalars

Latin upper case letters

A cross-sectional area

Amax A11 element of the membrane stiffness part in the main stiffness direction

E elastic modulus in isotropic case

E0,mean ; E90,mean  mean values of elastic moduli in grain and perpendicular to grain

E1 ; E2 elastic moduli in the orthotropy directions

Ex ; Ey elastic moduli in grain and perpendicular to grain directions

Ex,05 ; Ey,05 characteristic value of elastic moduli in grain and perpendicular to grain

G shear modulus in isotropic case

G12 ; G13 ; G23  shear moduli in the symmetry planes of the orthotropy

Gmean mean value of shear modulus

Gxy ; Gxz ; Gyz in-plane, transverse and rolling shear moduli of a plank

Gxy,05 ; Gxz,05 ; Gyz,05 characteristic in-plane, transverse and rolling shear moduli of a plank

Ip polar moment of inertia

L span length

Lcr effective buckling length

Mtor,d design value of torque between planks in the RVSE

N total number of the layers

Ncr elastic critical force

R1 ; R2 weighted inertia-like quantity by transverse shear stress calculation

Xd design value of strength parameter

Xk characteristic value of strength parameter

Latin lower case letters

a individual plank (board) width

d1 ; d2 weighted shear stiffness by transverse shear stress calculation

f general letter to strength parameter

fc,0,d design value of compressive strength along the grain

fc,0,k characteristic value of compressive strength along the grain

fc,90,d design value of compressive strength perpendicular to the grain
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fc,90,k characteristic value of compressive strength perpendicular to the grain

fc,α,k,i characteristic value of compressive strength in αi angle from the ith layer grain dir.

fm,0,d design value of bending strength along the grain

fm,0,k characteristic value of bending strength along the grain

fm,90,d design value of bending strength perpendicular to the grain

fm,90,k characteristic value of bending strength perpendicular to the grain

fR,d design value of shear strength from rolling shear

fR,k characteristic value of shear strength from rolling shear

ft,0,d design value of tensile strength along the grain

ft,0,k characteristic value of tensile strength along the grain

ft,90,d design value of tensile strength perpendicular to the grain

ft,90,k characteristic value of tensile strength perpendicular to the grain

ftor,d design value of torsional strength at glued contact surface

ftor,k characteristic value of torsional strength at glued contact surface

fv,d design value of shear strength from transverse effects along the grain

fv,k characteristic value of shear strength from transverse effects along the grain

fxy,d design value of shear strength from in-plane effects

fxy,k characteristic value of shear strength from in-plane effects

g1(z) ; g2(z) weighted first moment of area by transverse shear stress calculation

kc strength reduction factor due to buckling, instability factor

kcr crack factor for shear resistance

kdef deformation factor

kdefU deformation factor in ULS load combination

kdefSq deformation factor in SLS quasi-permanent load combination

kdefSf deformation factor in SLS frequented load combination

kdefSc deformation factor in SLS characteristic load combination

kh depth factor

kmod strength modification factor

kshape factor depending on the shape of the cross-section

ksys system strength factor

mx ; my ; mxy specific bending moments

ncr specific elastic critical force

nx ; ny ; nxy specific normal forces

q1 ; q2 specific transverse shear forces in the main stiffness direction
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qx ; qy specific transverse shear forces

r reduction factor on elasticity parameters by buckling calculation

r33 ; r66 ; r77 ; r88 reduction factors to the shell material stiffness matrix

t total thickness of the shell/plate

ti thickness of the ith layer or thickness of the RVSE

wcreep additional deflection from creep effect

wfin final deflection

winst instantaneous deflection

zi coordinates of the top and bottom edge of the layers

zn1 ; zn2 weighted centroid co-ordinates by transverse shear stress calculation

Greek upper case letters

Γ13(z) ; Γ23(z) transverse shear strain along thickness of the shell in main stiffness direction

Greek lower case letters

α angle between the main stiffness direction and the shell local system

αi angle between the grain direction and buckling length direction at the ith layer

βc straightness factor

γ13 ; γ23 shear strain in the main stiffness direction from the FSDT shell theory

γM partial factor for timber material

γyz ; γxz ; γxy engineering shear strains

ε0x ; ε0y; γ0xy mid-plane strains

εx ; εy ; εz normal strains

εyz ; εxz ; εxy tensorial shear strains

θi angles between the local system of the shell and the layers orthotropy directions 

κx ; κy ; κxy curvatures

λrel relative slenderness

ν12 Poisson's ratio in the 1-2 plane of the layer

νxy Poisson's ratio in the x-y plane of the board (plank)

ρ13 ; ρ23 shear correction factors

σc,0,d design compressive stress along the grain

σbuckling
c,0,d design compressive stress along the grain in case of buckling check

σtotal
compressive,0,d design total compressive stress along the grain in case of buckling check

σc,90,d design compressive stress perpendicular to grain
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σm,0,d design bending stress along the grain

σbuckling
m,0,d design bending stress along the grain in case of buckling check

σm,90,d design bending stress perpendicular to grain

σt,0,d design tensile stress along the grain

σt,90,d design tensile stress perpendicular to grain

σx ; σy ; σz normal stresses

τ0,d design value of nominal shear stress from in-plane effect

τ13 ; τ23 tranverse shear stresses in the main stiffness direction

τyz ; τxz ; τxy shear stresses

τnet,d design value of net shear stress from in-plane effect

τtor,d design value of torsional stress at glued contact surface

τxy,d design value of shear stress from in-plane effects of the plank

τxz,d design value of shear stress from transverse effects along the grain

τyz,d design value of shear stress from rolling shear

τ yz , d
inplane

     design value of rolling shear stress from additional in-plane effects

ψ0 factor for combination value of a variable action

ψ2 factor for quasi-permanent value of a variable action

Matrices, tensors

σij ; σ ; σ stress tensor with different notations

εij ; ε ; ε strain tensor with different notations

Cijkl ; C ; C fourth order material stiffness tensor by the general Hooke's law

Qij ; Q general material stiffness matrix 

Qij ; Q material stiffness matrix in the shell local system

 Qij ; Q      material stiffness matrix in the main stiffness direction

 Dij ; D ; D bending stiffness matrix in the shell local system

Bij ; B ; B eccentricity (coupling) stiffness matrix in the shell local system

Aij ; A ; A membrane stiffness matrix in the shell local system

Sij ; S ; S shear stiffness matrix in the shell local system

Sij ; S ; S shear stiffness matrix in the main stiffness direction

T(3x3) transformation matrix to the in-plane stiffnesses

T(2x2) transformation matrix to the out-of-plane material stiffnesses

T *
(2x2) transformation matrix to the out-of-plane structural stiffnesses
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Abbreviations

CLT cross laminated timber

EP elastic parameters

ESLM equivalent single layer method

FE finite element

FSDT first-order shear deformation theory

GMNIA geometric and material non-linear analysis with imperfections

RVE representative volume element

RVSE representative volume sub-element
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Preface
In the first part of this description we will show the theoretical background of the implemented
laminated composite shell method in FEM-Design and in the second one the cross laminated
timber (CLT) application of this theory will be shown.

In the literature the authors refer this applied mechanical model as “the equivalent single layer
method” (ESLM, see Ref. [1-3]). In FEM-Design we implemented this laminated composite
shell model into our 3D Structure program module. The main advantage of this method is that
with  a  bit  more  calculation  time  by  the  element  stiffness  matrix  using  a  homogenization
procedure the same equation number remains by the final structural equation system regardless
of the number of the layers. Another advantage is that the ESLM is applicable in a general
commercial structural finite element (FE) software with arbitrary geometry of shell regions and
boundary conditions with additional solid, shell and bar elements because this way the degrees
of freedom are compatible to each other. In addition to solve the problem we used new FE
formulation techniques (see Ref. [4-5]) which fit into the FEM-Design 3D Structure program
module, namely into the linear (standard) and the quadratic (fine) FE groups. The tricky part by
the FE formulation of the laminated composite shell is the coupling effect between the bending
and the membrane behaviour (see more detailed explanation later).

By the laminated composite  shells  FEM-Design uses the  first-order shear  deformation shell
theory (FSDT, Reissner-Mindlin theory, see Ref. [6]) such as by the former regular orthotropic
shells in FEM-Design. This is very important because by the deflections of a moderately thick
shells the shear deformations are not negligible especially in case of laminated composite shells.
In that case the shear correction factors by the transverse shear stiffnesses have an even greater
role in the calculation procedure to get the appropriate displacements and stresses (by a CLT
panel this means e.g. the rolling shear effect).

As a general structural analysis tool by the calculation results of the composite laminated shells
not only the displacements and internal forces will be available but also the in-plane (σx, σy, τxy)
and out-of-plane (τxz,τyz) stresses layer-by-layer which provide an appropriate result to design
check by general laminated composites.

One application of the laminated composite shells is the calculation and design of CLT panels.
Therefore by the timber design tab of FEM-Design 3D Structure module the user can confirm
the CLT panels to certain interaction formulas of stresses layer-by-layer, the buckling of a CLT
panel and by the analysis tab the adequate deflections can be verified.

The proposed calculation method is mainly valid in the following range: 0.01 < t/L < 0.1, where
t is the thickness of the laminated composite shell and L is the average span length.

The  precondition  to  using  this  new  laminated  shell  calculation  is  a  deep  knowledge  of
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mechanical shell theory [3][6].

Basic definitions

A beam is a structural element, its geometric configuration is a prismatic three-dimensional
solid whose cross-section is small when compared with its length. 

A plate/shell is a structural element, its geometric configuration is a three-dimensional solid
whose thickness is small when compared with other dimensions of it.

These basic assumptions by the mechanical model of a plate/shell results that when somebody
would like to  calculate  a plate/shell  (such as a CLT panel  which is  a surface structure) the
appropriate mechanical model is a plate/shell modell instead of a beam modell. Thus during the
modelling  of  a  surface  structure we should use a  mechanical  model  which  applicable  by a
surface structure namely e.g. plate/shell theory. It means that (ignoring some special cases) the
beam model is not applicable to calculate a surface structure. If someone using a beam model to
design  a  surface  structure  the  results  can  be  misleading  and  the  solution  could  be  very
uneconomical.
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1 Few words about linear elasticity

1.1 Material model

In solid mechanical point of view the material model is a mathematical characterisation of the
connection between the stress and strain field. In solid mechanics the stress field and strain field
are second order tensors.

The stress tensor of one point in a solid with different notations:

σ ij=σ =σ=[
σ 11 σ 12 σ 13
σ 21 σ 22 σ 23
σ 31 σ 32 σ 33

] (Eq. 1)

The infinitesimal strain tensor of one point in a solid with different notations:

ε ij=ε=ε=[
ε 11 ε 12 ε 13
ε 21 ε 22 ε 23
ε 31 ε 32 ε 33

] (Eq. 2)

The most known material model in solid mechanics is the linear elastic material model (Hooke's
law).  In  general  the  following  equation  describes  this  material  model.  With  index  notation
system and with matrix notation system:

σ ij=C ijkl :ε kl or σ=C :ε (Eq. 3)

In general  linear  elastic behaviour  the connection between the stress and strain tensors is  a
fourth-order material stiffness tensor.

The double dot product of a fourth-order tensor and a second-order tensor is a second-order
tensor (see Eq. 3).

With index notation Eq. 3 means the following:

[
σ 11 σ 12 σ 13
σ 21 σ 22 σ 23
σ 31 σ 32 σ 33

]=[
[
C 1111 C1211 C 1311

C 2111 C2211 C 2311

C 3111 C3211 C 3311
] [

C 1112 C 1212 C 1312

C 2112 C 2212 C 2312

C 3112 C 3212 C 3312
] [

C 1113 C 1213 C 1313

C 2113 C 2213 C 2313

C 3113 C 3213 C 3313
]

[
C 1121 C1221 C 1321

C 2121 C2221 C 2321

C 3121 C3221 C 3321
] [

C 1122 C 1222 C 1322

C 2122 C 2222 C 2322

C 3122 C 3222 C 3322
] [

C 1123 C 1223 C 1323

C 2123 C 2223 C 2323

C 3123 C 3223 C 3323
]

[
C 1131 C1231 C 1331

C 2131 C2231 C 2331

C 3131 C3231 C 3331
] [

C 1132 C 1232 C 1332

C 2132 C 2232 C 2332

C 3132 C 3232 C 3332
] [

C 1133 C 1233 C 1333

C 2133 C 2233 C 2333

C 3133 C 3233 C 3333
]]:[ε 11 ε 12 ε 13

ε 21 ε 22 ε 23
ε 31 ε 32 ε 33

] (Eq. 4)
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It can be represented with matrix notation with the same meaning as well:

[
σ 11
σ 12
σ 13
σ 21
σ 22
σ 23
σ 31
σ 32
σ 33

]=[
C1111 C 1112 C1113 C1121 C 1122 C1123 C1131 C 1132 C1133

C1211 C 1212 C1213 C1221 C 1222 C1223 C1231 C 1232 C1233

C1311 C 1312 C1313 C1321 C 1322 C1323 C1331 C 1332 C1333

C 2111 C 2112 C 2113 C 2121 C 2122 C 2123 C 2131 C 2132 C 2133

C 2211 C 2212 C 2213 C 2221 C 2222 C 2223 C 2231 C 2232 C 2233

C 2311 C 2312 C 2313 C 2321 C 2322 C 2323 C 2331 C 2332 C 2333

C 3111 C 3112 C3113 C 3121 C 3122 C3123 C 3131 C 3132 C3133

C 3211 C 3212 C3213 C 3221 C 3222 C3223 C 3231 C 3232 C3233

C 3311 C 3312 C3313 C 3321 C 3322 C3323 C 3331 C 3332 C3333

][
ε 11
ε 12
ε 13
ε 21
ε 22
ε 23
ε 31
ε 32
ε 33

] (Eq. 5)

In  this  relationship  (Eq.  4  or  5)  the  material  stiffness  fourth-order  tensor contains  81
independent parameters.

Considering that the Cauchy stress tensor and the infinitesimal strain tensor are symmetrical this
81 independent parameters reduce to 36 independent parameters. This means that:

C ijkl=C jikl=C ijlk=C jilk (Eq. 6)

Considering  a  fully  linear  elastic  stress-strain  relationship  (without  plastic  deformation  and
without any failure) and according to the the positive strain energy it can be proved that:

C (ij)(kl )=C (kl )(ij) (Eq. 7)

This induces that the 36 parameters reduce to 21 material parameters, see Ref. [3]. This means
that  by a general linear elastic anisotropic material 21 independent stiffness parameters
are necessary.
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1.2 The Voight notation of the general Hooke's law

Instead of the tensorial notation system the wide spreaded Voight notation system (see Ref. [7])
is popular in engineering practice. With the Voight notation system the second order stress and
the strain tensors will be vectors considering the mentioned symmetrical conditions of Eq. 1-2.
According to Eq. 6-7 the fourth order material stiffness tensor can rewrite as a 6×6 matrix Q.

With Voight notation system if the orthogonal Cartesian co-ordinate system is 1≡x; 2≡y; 3≡z :

[
σ xx
σ yy
σ zz
σ yz
σ xz
σ xy

]=[
Q11 Q12 Q13 Q14 Q15 Q 16

Q12 Q22 Q23 Q 24 Q25 Q 26

Q13 Q 23 Q33 Q 34 Q35 Q 36

Q14 Q24 Q34 Q 44 Q45 Q 46

Q15 Q25 Q35 Q 45 Q55 Q 56

Q16 Q26 Q36 Q46 Q56 Q 66

]⋅[
ε xx
ε yy
ε zz

2ε yz

2ε xz

2ε xy

] (Eq. 8)

In Eq. 8 by the mixed index elements of the strain vector a multiplier 2 is appering due to the
original  Eq.  5  connection  between  the  stresses  and  strains.  You  can  also  see  here  the  21
independent element of the material stiffness matrix by a general anisotropic material what was
indicated by Eq. 7.

This strain vector in Eq. 8 is the so-called engineering strain vector. Rewrite Eq. 8 with the most
common engineering notation for stress and strain we get:

[
σ x
σ y
σ z
τ yz
τ xz
τ xy

]=[
Q11 Q 12 Q13 Q14 Q15 Q16

Q12 Q 22 Q23 Q24 Q 25 Q26

Q13 Q 23 Q33 Q34 Q 35 Q36

Q14 Q 24 Q34 Q44 Q 45 Q46

Q15 Q 25 Q35 Q45 Q 55 Q56

Q16 Q26 Q36 Q46 Q 56 Q66

]⋅[
ε x
ε y
ε z
γ yz
γ xz
γ xy

] (Eq. 9)

In Eq. 8-9 we used a different letter by the material stiffness matrix part than by the fourth order
material  stiffness  tensor  because  we  would  like  to  emphasize  the  rearrangements  and  the
mentioned simplification from Eq. 6 and 7.

If we have a composite laminated material (e.g. CLT, etc.) we can say that the behaviour of the
layers one-by-one will  be the so-called  monoclinic material,  see Ref.  [3]. By a monoclinic
material Eq. 9 reduces to the following equation if the x-y is the plane of the symmetry in the
material (z is perpendicular to this plane):
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[
σ x
σ y
σ z
τ yz
τ xz
τ xy

]=[
Q11 Q 12 Q13 0 0 Q16

Q12 Q 22 Q23 0 0 Q26

Q13 Q 23 Q33 0 0 Q36

0 0 0 Q44 Q45 0
0 0 0 Q45 Q55 0

Q16 Q26 Q36 0 0 Q66

]⋅[
ε x
ε y
ε z
γ yz
γ xz
γ xy

] (Eq. 10)

When there are three mutually perpendicular symmetry planes the material  is  referred to as
orthotropic  material.  By  an  orthotropic  material  we  specify  the  stiffness  matrix  in  the
following way if and only if the coordinate system defined in such a way that the axes (  x  ,   y   and
z  ) are perpendicular to the three planes of symmetry:

[
σ x
σ y
σ z
τ yz
τ xz
τ xy

]=[
Q11 Q12 Q13 0 0 0
Q12 Q22 Q23 0 0 0
Q13 Q23 Q33 0 0 0
0 0 0 Q44 0 0
0 0 0 0 Q 55 0
0 0 0 0 0 Q66

]⋅[
ε x
ε y
ε z
γ yz
γ xz
γ xy

] (Eq. 11)

It means that by an orthotropic material 9 independent stiffness parameters are necessary.

REMARK: Note that in case of different coordinate system than the three planes of symmetry
the orthotropic stiffness matrix will be similar than in Eq. 10 but only 9 parameters will be
independent.
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2 The approximations due to the Reissner-Mindlin shell model in 
the constitutive law

2.1 The independent material constants in a general case

Considering the plane stress state (in x-y plane, which is the plane of the shell) neglecting the
normal stresses perpendicular to the plane of the shell, the material model in Eq. 10 (layer-by-
layer) reduces:

[
σ x
σ y
τ yz
τ xz
τ xy
]=[

Q 11 Q12 0 0 Q16

Q12 Q22 0 0 Q 26

0 0 Q 44 Q45 0
0 0 Q 45 Q55 0

Q16 Q26 0 0 Q66

]⋅[
ε x
ε y
γ yz
γ xz
γ xy
] (Eq. 12)

2.2 The independent material constants in orthotropic case

Considering the relevant mechanical behaviour by shells one layer material stiffness matrix (Eq.
12) can be separated into two parts, namely the  in-plane strain part and the  transverse shear
strain part  (see  Eq.  13a-b).  The  Reissner-Mindlin  theory  is  the  so-called  first-order  shear
deformation plate theory (FSDT), that is why the second transverse shear strain part will have a
great role in the calculations, see Ref. [6].

Due to this the following separation (and sequences) are wide-spread in the literature, see Ref.
[3]:

In-plane behaviour: 

[
σ x
σ y
τ xy
]=[

Q 11 Q12 Q 16

Q 12 Q22 Q 26

Q16 Q26 Q 66
]⋅[ ε x

ε y
γ xy
] (Eq. 13a)

Out-of-plane behaviour:

[τ xz
τ yz]=[Q55 Q45

Q45 Q44
]⋅[γ xz
γ yz] (Eq. 13b)

Eq. 12 and Eq. 13 are equivalent to each other.

In  the  laminated  composite  shells  the  laminates  one-by-one  typically  show  orthotropic
behaviour. Eq. 13 in case of the coordinate system defined in such a way that the axes are
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perpendicular to the three planes of symmetry (orthotropy directions) reduces to:

[
σ x
σ y
τ xy
]=[

Q11 Q12 0
Q12 Q22 0
0 0 Q66

]⋅[ ε x
ε y
γ xy
] ; [τ xz

τ yz]=[Q55 0
0 Q 44

]⋅[γ xz
γ yz] (Eq. 14)

It can be seen that by one layer - considering Reissner-Mindlin shell theory - 6 independent
stiffness parameters are necessary (see Eq. 14). 

This  stiffness  matrix  in  the  mentioned co-ordinate  system (in  orthotropy directions)  can  be
expressed with the engineering material constants (see Eq. 15).

In-plane stiffness:

[
Q11 Q12 0
Q12 Q22 0
0 0 Q66

]=[
E1

1−ν 12
2 E2

E1

ν 12

E 2

1−ν 12
2 E2

E1

0

ν 12

E 2

1−ν 12
2 E2

E1

E2

1−ν 12
2 E2

E1

0

0 0 G12

] (Eq. 15a)

Out-of-plane stiffness:

[Q55 0
0 Q44

]=[G13 0
0 G23

] (Eq. 15b)

In Eq. 15 the mentioned 6 independent engineering material constants appear, namely:

E1  - The elastic modulus in orthotropy direction 1 in the plane of the layer.

E2  - The elastic modulus in orthotropy direction 2 in the plane of the layer.

ν 12 - The Poisson's ratio in the 1-2 plane, (   ̵ ε2/ε1).

G12 - The shear modulus in the 1-2 plane.

G13 - The shear modulus in the 1-3 plane.

G23 - The shear modulus in the 2-3 plane.

Here 1-2-3 are the directions of the orthotropy and 1-2 plane is the plane of one layer.
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3 Homogenization method by a laminated composite shell
If we make a step from the material behaviour (Eq. 14) to the structural behaviour of a Reissner-
Mindlin shell model then the connection between the shell strains and shell internal forces in
case of homogeneous isotropy is the following well-known connection (see Eq. 16).

[
mx

my

mxy

n x

n y

n xy

q x

q y

]=[
E t 3

12 (1−ν 2)

ν E t 3

12(1−ν 2)
0 0 0 0 0 0

ν E t 3

12 (1−ν 2
)

E t 3

12(1−ν 2
)

0 0 0 0 0 0

0 0
G t 3

12
0 0 0 0 0

0 0 0 E t
1−ν 2

ν E t
1−ν 2

0 0 0

0 0 0
ν E t

1−ν 2

E t

1−ν 2 0 0 0

0 0 0 0 0 G t 0 0

0 0 0 0 0 0
5
6

G t 0

0 0 0 0 0 0 0
5
6

G t

][ κ x
κ y
κ xy
ε 0x
ε 0y
γ 0xy
γ xz
γ yz

] , (Eq. 16)

where E, G and ν are the elastic modulus, shear modulus and Poisson's ratio in case of isotropy 
and t is the thickness of the shell.

On the left side of Eq. 16 those values are the internal forces of a shell, namely:

mx, my, mxy – specific bending moments [kNm/m],

nx, ny, nxy – specific normal forces [kN/m],

qx, qy – specific transverse shear forces [kN/m].

On the right side in the vector the values are the shell strains, namely:

κx, κy, κxy – curvatures [rad/m],

ε0x, ε0y, γ0xy – mid-plane strains [-],

γxz, γyz – transverse shear strains [-].

The matrix in Eq. 16 contains an integration along the thickness of the shell taken into account
the isotropic material  model  and the equilibrium equations.  This  so-called constitutive shell
stiffness  matrix  to  Reissner-Mindlin  shells  is  not  that  simple  if  the  material  model  is  not
isotropic.

If the shell contains different parallel layers with different directions of orthotropy layer-by-
layer this matrix which gives the relation between the shell internal forces and shell strains will
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be much more complicated. To calculate this kind of shells a homogenization method along the
thickness of the shell is necessary. The name of the mechanical theory in the literature which
contains this laminated composite shell homogenization method is the equivalent single layer
method (ESLM). In the next chapter we will show the shell constitutive stiffness matrix in case
of general laminated composite shells.

3.1 General layer properties to the ABD matrix and the transverse shear part

Before the details of the calculation of the ABD matrix with shear parts (see Eq. 17) which will
gives  the  connection  between  the  shell  internal  forces  and  shell  strains  according  to  the
equivalent single layer method we need to define a sequence of the layers and the directions of
the orthotropy layer-by-layer.

Fig. 1 shows the layer sequence and thicknesses in FEM-Design. This figure also indicate the
direction of the orthotropy layer-by-layer.

[x'-y'-z'] is the local Cartesian coordinate system of the defined shell region (see Fig. 1).

[xi-yi-zi] is the orthotropy directions of the ith layer (see Fig. 1).

t1, t2,...tN are the thicknesses of the layers (see Fig. 1).

θ1, θ2,...θN are the angles between the local system of the shell and the own orthotropy direction
of the ith layer (see Fig. 1).

z1, z2,...zN, zN+1 are the coordinates of the top and bottom edge of the layers (perpendicular to the
plane of the shell) based on the mid-surface and the thickness of the layers (see, Fig. 2).

N is the total number of the layers (see Fig. 1-2).
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Figure 1 – A general laminated composite in FEM-Design with the local system of the shell (x'-y')
and with the orthotropy directions of the individual layers (xi-yi)
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According to Chapter 2.2 to every layer the following engineering material constants should be
defined regarding the own orthotropy directions of the specific layer (see Fig. 1):

E x  - The elastic modulus in orthotropy direction xi in the plane of the ith layer.

E y  - The elastic modulus in orthotropy direction yi in the plane of the ith layer.

ν xy - The Poisson's ratio in the xi- yi plane of the ith layer, (   ̵ εy/εx).

G xy - The shear modulus in the xi- yi plane of the ith layer.

G xz - The shear modulus in the xi- zi plane of the ith layer.

G yz - The shear modulus in the yi- zi plane of the ith layer.

In case of general laminated composite shells which was introduced in the beginning of this
chapter the constitutive shell stiffness matrix (see Eq. 17) will be much more complicated than
in isotropic case (see Eq. 16). This comes from the fact that in this case the layers have own
orthotropy directions separately as we saw in Fig. 1.

[
m x

m y

m xy

nx

ny

nxy

qx

q y

]=[
D11 D12 D16 B11 B12 B16 0 0
D12 D 22 D26 B12 B22 B26 0 0
D16 D 26 D66 B16 B26 B66 0 0
B11 B12 B16 A11 A12 A16 0 0
B12 B22 B26 A12 A22 A26 0 0
B16 B26 B66 A16 A26 A66 0 0
0 0 0 0 0 0 S 55 S45

0 0 0 0 0 0 S 45 S 44

][
κ x
κ y
κ xy
ε 0x
ε 0y
γ 0xy
γ xz
γ yz

] (Eq. 17a)

Or shortly:

[
m
n
q ]=[

D B 0
B A 0
0 0 S ][

κ
ε 0
γ ] (Eq. 17b)
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Figure 2 – The perpendicular coordinates of a laminate
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Before we show the calculation method of the elements of the matrix in Eq. 17 we need to make
a transformation on the orthotropic material stiffness matrix of the layers individually because
those matrices in Eq. 15 based on the engineering material constants are relevant in their own
orthotropy directions but we would like to write the final shell material stiffness matrix in the
local co-ordinate system (x'-y') of the shell. Because the matrices in Eq. 15 are tensor quantities
we need to use the following transformations.

The necessary transformation matrix for the in-plane stiffnesses of one layer from the orthotropy
direction into the local x'-y' system of the shell:

T (3x3)=[
cos2θ sin2θ cosθ sinθ
sin2θ cos2θ −cosθ sinθ

−2cosθ sinθ 2cosθ sinθ cos2θ−sin2θ ] , (Eq. 18)

where θ is the angle between the local system of the shell and the layer own orthotropy direction
(see Fig. 1).

Based on this  transformation  matrix  the  in-plane  stiffness  matrix  layer-by-layer  will  be  the
following in the shell local system x'-y':

[
Q 11 Q12 Q 16

Q 12 Q22 Q 26

Q16 Q26 Q 66
]=T (3x3)

T [
Q11 Q12 0
Q12 Q22 0
0 0 Q66

]T (3x3) (Eq. 19)

Using these matrices we can assemble the different parts of the laminated shell  constitutive
stiffness matrix in the shell local system x'-y' as you can see in the following chapters.

Here we should emphasize that during the calculation of the shell constitutive stiffness matrix
we need to decide first that is there any longitudinal shear coupling (e.g. glue between layers) or
not. If the shear coupling between layers is the case what we want to consider then we will get
stress distribution what you can see in Fig.  4 and 6 and if  the case what we would like to
consider  is  the  stiffnesses  without  shear  coupling behaviour  finally  we  will  get  stress
distribution what you can see in Fig. 5 and 7.

3.2 Calculation of the stiffness matrix with shear coupling behaviour

3.2.1 Bending stiffness part

In Eq. 17 matrix the Dij part is the so-called bending stiffness part of a mechanical shell. In case
of isotropy Eq. 16 shows how this part looks like but in case of a general laminated composite
shell  the calculation is  much more complicated when shear coupling is  considered between
layers. In a general case with the aim of Eq. 19 the bending stiffness part can be calculated with
the following equation (see Eq. 20):
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Dij=
1
3
∑
k=1

N

(Qij )k ( zk
3−zk+1

3 ) (i, j = 1,2,6) unit: [kNm2/m] (Eq. 20)

3.2.2 Membrane stiffness part

In Eq. 17 matrix the Aij part is the so-called membrane stiffness part of a mechanical shell. In
case  of  isotropy Eq.  16 shows how this  part  looks like  but  in  case of  a  general  laminated
composite shell the calculation is much more complicated when shear coupling is considered
between layers. In a general case with the aim of Eq. 19 the membrane stiffness part can be
calculated with the following equation (see Eq. 21):

Aij=∑
k=1

N

(Q ij)k ( zk−zk+1) (i, j = 1,2,6) unit: [kN/m] (Eq. 21)

3.2.3 Eccentricity stiffness part

In  Eq.  17  matrix  the  Bij part  is  the  so-called  eccentricity  (coupling)  stiffness part  of  a
mechanical shell. In case of isotropy Eq. 16 shows that this part is equal to zero but in case of a
general  laminated  composite  shell  the  calculation  is  much  more  complicated  when  shear
coupling  is  considered  between  layers.  This  part  of  the  shell  constitutive  stiffness  matrix
indicates that the membrane strains and bending strains can have interaction on each other.  It
means that by a general laminated composite if only membrane strains are in the shell
then not only in-plane internal forces arise but also bending moments and vice versa if
only bending strains are in the shell then not only bending internal forces arise but also in-
plane internal forces.

In a general case with the aim of Eq. 19 the eccentricity stiffness part can be calculated with the
following equation (see Eq. 22):

Bij=
1
2
∑
k=1

N

(Qij)k (z k
2
−z k+1

2
) (i, j = 1,2,6) unit: [kNm/m] (Eq. 22)

The quantities in the former three equations are based on Eq. 19 and Fig. 2.

3.2.4 The transverse shear stiffness part

The transverse shear part calculation is also complicated according to the effect of the shear
correction factors which are necessary when we are talking about FSDT shells. The detailed
description of the calculation of the shear correction factors will be shown in Chapter 3.2.4.1-2
when shear coupling is considered between layers. 

First of all the orthotropic transverse shear stiffness (see Eq. 15b) should be transformed into the
so-called main stiffness direction of the laminated shell (see the reasons and details of the main
stiffness direction in Chapter 3.2.4.1).

The  necessary  transformation  matrix  for  the  out-of-plane  stiffnesses  of  one  layer  from the
orthotropy direction into the main stiffness direction:
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T (2x2)=[ cos(α−θ ) sin (α−θ )
−sin(α−θ ) cos(α−θ )] , (Eq. 23)

where  α is the angle between the main stiffness direction and the shell  local system  x' (see
Chapter 3.2.4.1 and Fig. 3) and θ is the angle between the local system of the shell and the own
orthotropy direction of one layer (see Fig. 1).

Based on this transformation matrix the out-of-plane stiffness matrix layer-by-layer will be the
following in the main stiffness direction:

[Q55 Q45

Q45 Q44
]=T (2x2)[G13 0

0 G23
]T (2x2)

T (Eq. 24)

With these matrix in Eq. 24 layer-by-layer the transverse shear stiffness part S 55 and S 44

can be calculated with the following ways:

S 55=ρ 13∑
k=1

N

(Q55)k( zk−zk+1) unit: [kN/m] (Eq. 25)

S 44=ρ 23∑
k=1

N

(Q 44)k (z k−z k+1) unit: [kN/m] (Eq. 26)

where  ρ13 and  ρ23 are  the shear  correction factors.  These shear  correction factors should be
calculated in the main stiffness direction and prependicular to it according to Chapter 3.2.4.2.

The  shear  correction  factors  are  necessary  here  because  the  Reissner-Mindlin  shell  theory
assumes  only constant  transverse  shear  strain  along  the  thickness  (FSDT)  of  the  shell  and
without  these  corrections  by  the  shear  stiffnesses  the  theory  underestimate  the  shear
deformations. We emphasize here that the shear correction factors by a laminated shell are not
equal to the well-known 5/6 value (see Eq. 16). The 5/6 value for the shear correction factor is
only valid  by homogeneous  plates.  By a  general  laminated  shell  these  values  are  typically
smaller (e.g.: by a typical CLT panel these values are closer to 1/4). The calculation method of
the shear correction factors by a laminated shell will be discussed in Chapter 3.2.4.2.

When we have the transverse shear stiffness of the laminated shell in the main stiffness direction
(see Eq. 25-26) it should be transformed back to the local x'-y' system of the shell to get the final
constitutive shell stiffness matrix (Eq. 17) which can be use to get the structural stiffness matrix
of the shell  finite element.  To get this  back transformation another transformation matrix is
necessary:

T∗

(2x2)=[cosα −sinα
sinα cosα ] , (Eq. 27)
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where  α is the angle between the main stiffness direction and the shell local system x'  of the
shell (see Fig. 3). Based on this transformation matrix the shear stiffness part in the local co-
ordinate system of the shell will be:

[S55 S 45

S45 S 44
]=T (2x2)

∗ [S55 0

0 S 44
]T(2x2)

∗T (Eq. 28)

This was the last missing block in Eq. 17 matrix to get the constitutive stiffness matrix of a
general laminated shell.

3.2.4.1 Main stiffness direction 

The shear correction factors should be calculated in the so-called main stiffness direction (and
perpendicular  to  it)  because  otherwise  the  problem  of  the  shear  correction  factors  for  a
laminated shell  using FSDT would be stress (internal  force) dependent,  therefore the whole
calculation would be nonlinear, see Ref. [8]. 

To calculate this main stiffness direction we need to find the global maximum of the following
equation (Eq. 29, the equation comes from tensor transformation, see Ref. [3]) regarding α. It
means that we need to find this α direction in the local Cartesian co-ordinate system of the shell
(see Fig. 3) where the A11 element of the former mentioned membrane stiffness (Eq. 21) of the
laminated shell has maximum extreme value.

 Amax=cos4α A11+sin 4α A22+cos2α sin2α (2 A12+4 A66)+cos3α sinα 4 A16+cosα sin3α 4 A26

(Eq. 29)

24

Figure 3 – The interpretation of the main stiffness direction on a polar curve,
the thick curve shows the amount of the A11 value in the different directions
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The α angle which satisfies the previous equation and give the maximum extremum of A11 will
be the angle of the main stiffness direction what was used in Eq. 23 and 27. Fig. 3 shows the
interpretation of the main stiffness direction on a polar curve.

3.2.4.2 Energy equivalency method

In this chapter we will show the calculation method of the shear correction factor in the main
stiffness direction (and perpendicular to it) what was mentioned in the previous chapter. The
transverse shear strain energy from shear forces and from the transverse shear stresses must be
equal to each other to ensure the correct shear deformation behaviour of the laminated shell due
to the simplification of the Reissner-Mindlin theory what was mentioned at the beginning of this
Chapter. In this sub-chapter the indices 1,3 show the main stiffness direction and the normal
direction of the flat shell element. The 2,3 indices show the direction perpendicular to the main
stiffness direction and the normal direction of the flat shell element.

According to the energy equivalency we can write the transverse shear energy from the assumed
shear stress distribution along the thickness and from the shear force (see Eq. 30). These two
energy must be equal to each other (see Ref. [9-10] for further information).

∫
−

t
2

t
2

τ 13( z)Γ 13( z)d z=
q1γ 13
ρ 13

, (Eq. 30)

where τ13(z) and Γ13(z) are the relevant shear stress and the shear strain along the thickness of the
shell.  q1 and  γ13 are the relevant shear force and the constant transverse shear strain along the
thickness which comes from the Reissner-Mindlin shell theory (FSDT) and finally  ρ13 is the
shear correction factor. 

The assumed τ13(z) transverse shear stress along the thickness can be written with the following
formula (similarly as transverse shear stresses by Zhuravskii): 

τ 13(z )=
q1

R1

g1(z ) , (Eq. 31)

where:

g1(z )=−∫
−

t
2

z

Q11(z )(z−zn1)d z (Eq. 32)

and
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R1=∫
−

t
2

t
2

Q11(z )(z−z n1)
2 d z (Eq. 33)

In Eq. 32 and 33 zn1  is the following:

zn1=

∫
−

t
2

t
2

Q11(z ) z d z

∫
−

t
2

t
2

Q11(z )d z

(Eq. 34)

Q11(z)  is the first element of the in-plane material stiffness matrix (see Eq. 15a) transformed
into the main stiffness direction layer-by-layer.

Based on these equations we can rewrite Eq. 30:

∫
−

t
2

t
2 q1 g 1( z)

R1

q1 g1( z)

R1 Q55(z )
d z=

q1 q1

ρ 13∫
−

t
2

t
2

Q55( z)d z

(Eq. 35)

If we define the following:

d 1=∫
−

t
2

t
2

Q55(z )d z , (Eq. 36)

where  Q55(z) is the transverse shear stiffness of the layers in the main stiffness direction
according  to  Eq.  24,  then  the  shear  correction  factor  in  the  main  stiffness  direction  can
expressed as:

ρ13=
R1

2

d 1∫
−

t
2

t
2 g1

2( z)

Q55(z )
d z

(Eq. 37)
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Perpendicular to the main stiffness direction the shear correction factor can be calculated in a
similar way.

ρ 23=
R2

2

d 2∫
−

t
2

t
2 g2

2
(z )

Q44(z )
d z

, (Eq. 38)

where above the already mentioned variables the values comes from the index changing in Eq.
30-37, namely 1→ 2 ; 5 → 4.

3.3 Calculation of the stiffness matrix without shear coupling behaviour

3.3.1 Bending stiffness part

In case of without shear coupling between layers the calculation of the bending stiffness is only
a summation of the bending stiffnesses of the layers such as individual layers which are not
working together. 

Dij=∑
k=1

N

(Q ij)k
(z k−zk+1)

3

12
(i, j = 1,2,6) unit: [kNm2/m] (Eq. 39)

3.3.2 Membrane stiffness part

The calculation of the membrane stiffness part is the same as in Eq. 21 independendly from the
shear coupling behaviour. 

Aij=∑
k=1

N

(Q ij)k ( zk−zk+1) (i, j = 1,2,6) unit: [kN/m] (Eq. 21)

3.3.3 Eccentricity stiffness part

Without  shear  coupling  between  the  layers  the  eccentricity  (coupling)  behaviour  between
bending and membrane part is missing, therefore this part always equal to zero in this case.

Bij=0 (i, j = 1,2,6) unit: [kNm/m] (Eq. 40)

3.3.4 The transverse shear stiffness part

Without shear coupling between the layers the shear correction factor is the very well-know 5/6 
(see Ref. [6]) therefore the calculation of this part has much simple form.

S ij=
5
6
∑
k=1

N

(Qij )k ( zk−zk+1) (i, j = 4,5) unit: [kN/m] (Eq. 41)
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4 Stress calculation in composite laminated shells

4.1 In-plane stresses

4.1.1 With shear coupling behaviour between layers

The in-plane stresses are calculated with the following formulas. First of all we need to calculate
the in-plane strains at  that height (z'  coordinate) where we would like to know the in-plane
stresses. After this we need to use Eq. 13a to calculate the in-plane stresses.

[
ε x
ε y
γ xy]=[

ε 0x
ε 0y
γ 0xy]+z '[

κ x
κ y
κ xy
] (Eq. 42)

Recall again Eq. 13a:

[
σ x
σ y
τ xy
]=[

Q11 Q 12 Q 16

Q12 Q 22 Q 26

Q16 Q 26 Q 66
][ ε x
ε y
γ xy
] (Eq. 13a)

Here the  x-y co-ordinate system can be interpreted in any Cartesian directions of the specific
layer but the  Q in-plane stiffness matrix of one layer should be also interpreted in the same
system as well the stresses and strains. Usually due to the strength check of one point of the
layer these directions should be in the direction of the orthotropy of the layer one-by-one. Thus
it means that usually the necessary direction can be in different directions layer-by-layer by a
general laminated shell.

For example Fig. 4 shows typical normal stress distributions in a general laminated shell in case
of shear coupling between layers.
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Figure 4 – Typical normal stress distributions in a general laminated shell
with shear coupling between layers
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4.1.2 Without shear coupling behaviour between layers

This calculation can be done with the consideration of the layers as individual shells:

[
σ x
σ y
τ xy
]=[

Q 11 Q12 Q 16

Q 12 Q22 Q 26

Q16 Q26 Q 66
][ ε x
ε y
γ xy
]+ z '[

Q11 Q12 Q16

Q12 Q22 Q26

Q 16 Q26 Q66
][κ x
κ y
κ xy
] ,  (Eq. 43)

where z' should satisfy the following equation by the analyzed (specific) layer where we would 
like to get the stresses:

−
( zk−z k+1)

2
≤z '≤

(zk−z k+1)

2
(Eq. 44)

Here the  x-y co-ordinate system can be interpreted in any Cartesian directions of the specific
layer but the  Q in-plane stiffness matrix of one layer should be also interpreted in the same
system as well the stresses and strains. Usually due to the strength check of one point of the
layer these directions should be in the direction of the orthotropy of the layer one-by-one. Thus
it means that the necessary direction can be in different directions layer-by-layer by a general
laminated shell.

For example Fig. 5 shows typical normal stress distributions in a general laminated shell  in case
of without shear coupling between layers.

4.2 Transverse shear stresses

4.2.1 With shear coupling behaviour between layers

The transverse shear  stresses  along the thickness should be calculated in  the main stiffness
direction (and perpendicular to it) with the following formulas from Chapter 3.2.4.2:

τ 13(z )=
q1

R1

g1(z ) , (Eq. 45)

29

Figure 5 – Typical normal stress distributions in a general laminated shell
without shear coupling between layers
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τ 23(z )=
q2

R2

g2(z ) , (Eq. 46)

As you can see the transverse shear stresses are calculated from the transverse shear forces using
the  equilibrium  condition  between  the  normal  stress  increments  and  transverse  shear  with
reciprocal theorem (as by transverse shear stresses by Zhuravskii).

For example Fig. 6 shows a typical transverse shear stress distribution in a general laminated
shell in case of shear coupling between layers.

After we get these shear stresses in the main stiffness direction they can be transformed into
arbitrary directions (e.g. shell local or layer local systems).

4.2.2 Without shear coupling behaviour between layers

Without shear coupling between layers the transverse shear stresses at the top and the bottom of
each individual layers will be zero. The maximum value of the transverse shear stresses layer-
by-layer will be at the center (mid-surface) of each individual layers and calculated with the
following formula (see Ref. [6]):

[τ xz
τ yz]max

=1.5
5
6 [Q55 Q45

Q45 Q44
][γ xz
γ yz] (Eq. 47)

Here the  x-y co-ordinate system can be interpreted in any Cartesian directions of the specific
layer but the Q out-of-plane stiffness matrix of one layer should be also interpreted in the same
system as well the stresses and strains.

In the rest part of the layers the transverse shear stresses show a parabolic distribution which are
clear according to the mentioned information above.

For example Fig. 7 shows a typical transverse shear stress distribution in a general laminated
shell in case of without shear coupling between layers.
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Figure 6 – A typical transverse shear stress distribution in a general laminated shell
with shear coupling between layers
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Figure 7 – A typical transverse shear stress distribution in a general laminated shell
without shear coupling between layers
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5 Cross Laminated Timber application of the laminated composite 
shell theory
The laminated composite shell theory (ESLM) - what was introduced in the prevoius chapters -
was implemented in FEM-Design 3D Structure and in general it is usable to check the correct
deformations and stress distribution (layer-by-layer) of a composite shell. 

Here in this chapter the cross laminated timber (CLT) application of the composite shell theory
will be discussed with the aim of some part of the Eurocode 5 and other recommendations as
well.  We will  show the  design calculations related to CLT products with ESLM what  was
implemented in FEM-Design program.

In Europe there are several methods which have been adopted to calculate the basic mechanical
properties (displacements and stresses) of CLT panels. Some of these methods are experimental
and others are analytical/numerical. In the former chapters we indicated how the calculations are
performed in FEM-Design, but here we summarize in few sentences including but not limited
to, mechanically jointed beams theory (γ method), composite theory (k method), shear analogy
method and Timoshenko beam theory based on [11-12].

Mechanically Jointed Beams Theory (  γ   method  ) [13]

In the past years in Europe a common analytical approach has been adopted for CLT design the
Mechanically Jointed Beams Theory (so-called Gamma Method) that is available in Eurocode 5.
This  rudimentary  method  was  developed  for  beams  connected  together  with  mechanical
fasteners with stiffness k uniformly spaced at distance s. In this theory the effective stiffness and
the connection efficiency factor are used to take into accound the effect of shear deformation of
crossing layers. Only layers acting in the direction of loading are used and the shear deformation
of  longitudinal  layers  is  neglected.  This  concept  gives  a  good  solution  for  the  differential
equation  but  the  main  limitation  is  that  it  is  only  valid  for  simply  supported  beams  with
sinusoidal load distribution.

Composite theory (  k   method) [14-15]

This method is predict some design properties of CLT, but this method does not account the
shear  deformation  at  all,  thus  it  is  only  accurate  for  high  span-to-depth  ratios.  Other
disadvantage of this method is that the necessary composition factors  (ki) are determined for
certain loading configurations and impossible to use in a general case.

Shear analogy method [12][16]

With  this  procedure  the  different  modulus  of  elasticity  and  shear  modulus  of  single  layers
considered into a compound virtual beam model with two separated virtual beams. There is a
limitation by this model also, namely the load should be perpendicular to the panel and by the
final deflection calculation some parameters are derived only for certain load situations.

Timoshenko beam theory [17-18]
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Recently this is the most common and practically used beam theory if the shear deformation is
considered.  It  is  also  applicable  to  design  CLT panel  considering  beam behaviour.  By this
method the precise shear correction factor calculation is necessary, which is the most critical
part of this model to get the correct deflections. 

Remarks on the previously mentioned methods

Obviously all of the mentioned beam theoretical approaches - or we can say here the beam
theories at all - are not able to account surface structure load transfer and basically not able to
provide such mechanical behaviour like plate/shell.  It is more clear that the CLT panels are
unable to treat as a beam because the width of one individaul panel can reach 3 meters. With this
width a CLT panel goes beyond the definition of a beam! It means that the mentioned four
different calculation methods regarding CLT panels are inapplicable if we would like to model
an arbitrary shaped plate or wall with arbitrary boundary (support) conditions. 

In  addition  it  is  also  a  requirement  in  FEM-Design  3D Structure  module  that  the  applied
external loads on the panels need to be arbitrary. Therefore the previously introduced laminated
composite shell theory (ESLM with FSDT) is much better calculation method which provides
more realistic results in all aspects than the mentioned beam theories and last but not least it is
suitable for integration into FEM-Design 3D Structure module.

Laminated composite shell theory (ESLM) as CLT application

Structural  elements  made  of  CLT  material  with  different  mechanical  plate  theories  were
modeled and calculated in Ref. [19]. In this reference compared with experimental studies they
stated that with ESLM theory the deflections are very close to the experimental results. Based
on Ref. [19] displacements from the calculations and from measured values were almost the
same, thus it means that the stiffness representation of the laminated composite shells are very
adequate to model a CLT structure. In Ref. [20] it is also concluded that the stiffnesses of the
laminated composite shell theory is more than appropriate to CLT structural design compared to
analytical plate solution in Ref. [21]. Although in Ref. [20] it is also stated that more advanced
plate theories are capable of producing more accurate shear stress results directly, however the
ESLM provides corresponding shear stress results in engineering point of view based on Eq. 45-
46.

5.1 Additional settings to CLT application of laminated composite shells

5.1.1 Shear coupling or no shear coupling settings between layers

In Chapter 3.2, 4.1.1 and 4.2.1 the stiffness and stress calculation of a laminated composite shell
with  shear  coupling  between layers have  been derived.  In  Chapter  3.3,  4.1.2 and 4.2.2  the
stiffness and stress calculation of a laminated composite shell  without shear coupling between
layers have been stated. Fig. 8 shows the position of the glue what is necessary to provide the
shear coupling behaviour between layers. These glue between the layers what was indicated in
Fig.  8  mostly  provided  by the  manufacturers.  By default  FEM-Design  considers  the  shear
coupling between layers.
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5.1.2 No glue at narrow side option

If our laminated composite shell modelled with CLT material then there is an additional option
in the program namely: “no glue at narrow sides” option. Fig. 9 shows the positions of these
narrow sides gluing area. Some of the manufacturers provides the glue at these narrow sides
between the planks but some of the manufacturers don't. By default FEM-Design considers glue
at narrow sides. If there is glue between the narrow sides of the planks the stiffness matrix
calculation is according to Chapter 3.2 and 3.3.

If  the  no  glue  at  narrow sides  is  the  adjusted  case  then  the  following modification  by the
stiffness matrix calculation will be made:

– One of the layers elastic constans properties will be modified. According to Chapter 3.1
notation system for every layers the value of Ey = 0 during the homogenization method to
the stiffness matrix. It means that the Young's modulus perpendicular to the grain direction
will be zero during the stiffness and stress calculation.

5.1.3 Additional reduction factors on the constitutive shell stiffness matrix

There could be made some other stiffness reduction with r33,  r66,  r77 and  r88 on the stiffness
matrix namely on the elements which are indicated in Eq. 48. These reduction factors could be
useful if the manufacturer or the handbook of the CLT provider give these reduction factors to
the homogenization considering measurements and experimental formulas.
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Figure 8 – The necessary positions of the glued surfaces to ensure shear coupling between layers (green lines)

Figure 9 – The positions of the glued surfaces to ensure glue at narrow sides behaviour option (blue lines)



Theory of Laminated Composite Shells FEM-Design 19 

[
D11 D12 D16 B11 B12 B16 0 0
D12 D22 D26 B12 B22 B26 0 0
D16 D26 r 33 D66 B16 B26 B66 0 0
B11 B12 B16 A11 A12 A16 0 0
B12 B22 B26 A12 A22 A26 0 0
B16 B26 B66 A16 A26 r66 A66 0 0
0 0 0 0 0 0 r77 S 55 S 45

0 0 0 0 0 0 S 45 r 88 S44

] (Eq. 48)

REMARK 1:  Regarding the  consequent  stress  calculation  and the  physical  causes  of  these
modifications on the stiffness matrix (Eq. 48) these options only applicable by a CLT panel if
the laminated composite has symmetrical layers or with other words the eccentricity stiffness
part is zero (Bij=0; (i, j = 1,2,6)).

REMARK 2: There is additional recommendations in the literature if the no glue at narrow sides
option adjusted, namely e.g. in Ref. [22] instead of Eq. 21 the A66 element of the stiffness matrix
should be calculated with the following formula, see Eq. 49:

A66=0.25∑
k=1

N

(Q66)k ( zk−zk+1) (Eq. 49)

If the user would like to apply this specific recommendation in FEM-Design by the stiffness
reduction factors (see Eq. 48) the r66 value should be adjust to 0.25.

5.2 Load duration classes

According to Eurocode 5 (see Ref. [23]) the actions shall be assigned to one of the load-duration
classes given in the following table:

Load Duration Class Accumulated Duration of load

Permanent > 10 years

Long term 6 months – 10 years 

Medium term 1 week – 6 months

Short term < 1 week

Instantaneous N/A

Table 1 – Load duration classes
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5.3 Service classes

According to Eurocode 5 structures shall be assigned to one of the service classes given below:

– Service  class  1:  characterised  by a  moisture  content  in  the  materials  corresponding  to  a
temperature of 20°C and the relative humidity of the surrounding air only exceeding 65 % for a
few weeks per year. The average moisture content in most softwoods will not exceed 12 %.

– Service  class  2:  characterised  by a  moisture  content  in  the  materials  corresponding  to  a
temperature of 20°C and the relative humidity of the surrounding air only exceeding 85 % for a
few weeks per year. The average moisture content in most softwoods will not exceed 20 %.

– Service class 3: characterised by climatic conditions leading to higher moisture contents than
in service class 2.

5.4 Modification factors on strength and stiffness

5.4.1 Effect of load-duration and moisture content on strength

The load-duration classes and service classes have effect on the design strength properties of the
timber structures. The general calculation formula of the design strength parameters in Eurocode
5:

X d=kmod

X k
γ M

, (Eq. 50)

where Xd is the design value of a strength parameter, Xk is the characteristic value of a strength
parameter, γM is the partial factor for a strength parameter and  kmod  is the modification factor
according to the following table to CLT members (see Ref. [23-24]):

Service
class

Load duration class – kmod values

Permanent Long term Medium term Short term Instantaneous

1 0.60 0.70 0.80 0.90 1.10

2 0.60 0.70 0.80 0.90 1.10

3 0.50 0.55 0.65 0.70 0.90

Table 2 – Strength modification factors in different service and load duration classes

5.4.2 Effect of moisture content on deformation

For the different limit states (ultimate or serviceablility) the service classes have effect on the
used deformation properties of the timber structures. The general calculation formula of the used
deformation parameters in Eurocode 5:

EP
1+k d e f

, (Eq. 51)
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where  EP  is  an  elastic  parameter  (Young's  or  shear  modulus)  and  kdef  is  the  deformation
modification factor. We will talk about this used deformation properties in Chapter 5.5 that how
it is applied in FEM-Design by the different load combinations.

According to Ref. [24] the recommended values of kdef for CLT members:

Service class CLT – kdef

1 0.60

2 0.80

3 N/A

Table 3 – The recommended deformation factors by CLT panels according to Ref. [24]

According to Ref. [25-26] the recommended values of kdef for CLT members:

Service class CLT – kdef

1 0.90

2 1.10

3 N/A

Table 4 – The recommended deformation factors by CLT panels according to Ref. [25-26]

5.4.3 System strength

According  to  Eurocode  5  when  several  equally  spaced  similar  members,  components  or
assemblies are laterally connected by continuous load distribution system, the member strength
properties may be multiplied by a system strength factor ksys. For glued laminated timber decks
or floors the ksys value according to the Eurocode 5 is the following:

k sys=min [1.2 ; 0.9714+0.02857 N ] , (Eq. 52)

where N is the loaded laminations. 

REMARK: Although this value is given in Eurocode 5 the application of  ksys is not necessary
because EC5 design methodology is based on beam mechanical model, which neglects many
effects (e.g. Poisson's ratio etc.) if the analyzed structure is a plate such as CLT floor decks,
walls. In FEM-Design the new mechanical model for the CLT panel is the mentioned laminated
composite shell theory, therefore the recommended value for system strength factor:

k sys=1.0 .
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5.4.4 Effect of cracks

In Eurocode 5 for the verification of shear resistance of members in bending the influence of
cracks should be taken into account using a crack factor kcr . However in Ref. [27] it is noted that
it is not necessary, because CLT is a plane element with connected glued layers and potential
cracks are assumed to be considered in the product confirmations, therefore we neglect this
effect in the new CLT calculation method in FEM-Design.

5.4.5 Effect of shape and size of cross section on strength

In Eurocode 5 the modification on strength parameters due to cross-sectional size and shape of a
beam and other members is taken into account by applying a factor  kshape and  kh  to the design
strength. The theory behind  kshape parameter presumes the consumption a beam model thus in
FEM-Design the kshape = 1.0. The size effect on strength parameters has not standardized yet by a
CLT panel so the size effect also neglected, kh = 1.0.

5.4.6 Partial factor for material properties

The  relevant  partial  factor  to  CLT members  should  be  stated  in  the  National  Annex,  but
according to Ref. [23] the recommended value by CLT members is γM = 1.25 by ultimate limit
state load combinations.

5.5 Design value of a material properties

Usually if the material of the different layers in the laminated shell is made by timber material
the following elastic properties should be considered layer-by-layer but of course these values
are adjustable by the users. Here you can see the specific material values which are related to
C24 timber  which  is  mostly the  main  component  of  CLT members.  These  values  are  only
informative  and  mainly  according  to  EN 338  and  other  recommendations  (e.g.  Ref.  [28]).
Additional information can be found in the documentations of manufacturers as well.

The Young's modulus in the direction of the grain:

E x=E0,mean=11000 MPa  

The Young's modulus perpendicular to the grain direction:

E y=E90, mean=370MPa

The shear modulus parallel with grain direction: 

G xy=G xz=Gmean=690 MPa

The rolling shear modulus:

G yz≈
Gmean

10
=69MPa

The Poisson's ratio in the relevant direction of the planks (see Chapter 2.2, Ref. [28]):

0.2≤ν xy≤0.45
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By the stiffness matrix calculation the considered elastic properties are calculated based on the
deformation  factor  (kdef,  see  Eq.  51).  In  FEM-Design the  users  are  able  to  define  different
deformation factors for the different type of load combinations:

– kdefU in ultimate limit state combinations,

– kdefSc characteristic serviceability limit state combinations,

– kdefSf frequented servecibility limit state combinations, 

– kdefSq quasi-permanent serviceablility limit state combinations. 

The elastic parameters which will be used by the finite element calculation are derived with the
following  formulas.  All  of  the  elastic  properties  (except  Poisson's  ratio)  will  be  reduced
according to the following table.

The elastic properties  EP can be the Young's modulus (elastic modulus) or shear modulus as
well:

Elastic properties (Young's or shear modulus)

Load case calculation

Load group calculation

1st order load combination

Construction stage

ULS
EP

1+k defU

SLS characteristic
EP

1+k defSc

SLS frequented
EP

1+k defSf

SLS quasi-permanent
EP

1+k defSq

2nd order load combination

Imperfection calculation

ULS EP
γ M

SLS characteristic EP
γ M

SLS frequented EP
γ M

SLS quasi-permanent EP
γ M

Stability analysis EP

Eigenfrequency calculation
Seismic analysis

All dynamic analysis
EP

Table 5 – The used elastic parameters to the homogenization procedure by the different types of calculations in
FEM-Design

In Table 5 γM is the partial factor for timber material in ULS, see Chapter 5.4.6.
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5.6 Strength resistance properties of CLT panels

Due to the fact that a CLT panel in mechanical point of view is a plate and not a beam additional
strength parameters appears than by a beam. In FEM-Design program we use the following
strength parameters. The meanings of them can be seen in Fig. 10.

fm,0,k –  the characteristic value of bending strength along the grain

fm,90,k –  the characteristic value of bending strength perpendicular to the grain

ft,0,k –  the characteristic value of tensile strength along the grain

ft,90,k –  the characteristic value of tensile strength perpendicular to the grain

fc,0,k –  the characteristic value of compressive strength along the grain

fc,90,k –  the characteristic value of compressive strength perpendicular to the grain

fxy,k –  the characteristic value of shear strength from in-plane effects

fv,k –  the characteristic value of shear strength from transverse effects along the grain

fR,k –  the characteristic value of rolling shear strength

ftor,k –  the characteristic value of torsional strength at glued contact surface

By a regular C24 timber the recommended characteristic strength parameters are as follows
(considering EN338 and Ref. [22-29]):

fm,0,k = 24.0 MPa

fm,90,k = 1.0 MPa

ft,0,k = 14.5 MPa

ft,90,k = 0.5 MPa

fc,0,k = 21.0 MPa

fc,90,k = 2.5 MPa

fxy,k = 4.0 MPa

fv,k = 4.0 MPa

fR,k = 1.5 MPa

ftor,k = 3.5 MPa

Naturally more precise values can be found in the brochures of the manufacturers.
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Figure 10 – Representation of the causes of the different strength values
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5.7 Design values of strength resistance properties of CLT panels

The design values  of  the CLT strength parameters  considering the mentioned load duration
classes, system modification factor and partial factor are as follows:

{
f m ,0 , d

f m ,90 ,d

f t ,0 , d

f t ,90 ,d

f c ,0 ,d

f c ,90 , d

f xy ,d

f v , d

f R , d

f tor ,d

}=k sys

k mod
γ M {

f m,0 ,k

f m,90 , k

f t ,0 ,k

f t ,90 , k

f c ,0 , k

f c ,90 ,k

f xy , k

f v , k

f R ,k

f tor , k

} , (Eq. 53)

where on the left side the values are the design strength values of the mentioned characteristic
properties in Chapter 5.6. The recommended value ksys is 1.0 for CLT members according to the
explanation in Chapter 5.4.3, but of course it is adjustable by the user.

5.8 Design checks in ultimate limit state

In Chapter 5.6-7 we defined the different strength parameters and visualized the meanings of
them. Here in  this  Chapter  we will  show the equations  which are  the  basics  of  the design
procedures of a CLT panel in FEM-Design. All of the given checking equations in the following
sub-chapters could be relevant in any layers of the CLT panel, therefore the following equations
must be checked in every layers to design a given panel.

REMARK:  In  this  chapter  the  0  and  90  indices  by the  normal  stress  and  normal  strength
parameters indicate the grain and perpendicular to grain direction repectively. Because there is
no unified standardization to the notation of the different  shear  stresses and shear strengths
therefore in this chapter by these values the  x-y-z  indices mean the orthotropy directions of a
specific layer.

The design formulas are based on Ref. [22-23],[29-35].

5.8.1 Normal stresses from compression, tension and bending

In this Chapter the design equations will be shown to the checking the normal stresses in one
layer in the CLT panel. Thus it means that all of the given equations in Chapeter 5.8.1 is relevant
in the direction of the grain and perpendicular to the grain of one layer. The meanings of the
separation of the normal stresses in the grain or perpendicular to the grain direction is given in
Fig. 11.
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5.8.1.1 Tension and bending parallel to grain direction

If the greater absolute value of the normal stresses at the top or bottom side in the grain direction
of one layer is tensile stress then the following equation should be fulfilled.

σ t ,0 , d

f t ,0 ,d

+
∣σ m ,0 , d∣

f m,0 ,d

≤1.0 (Eq. 54)

5.8.1.2 Tension and bending perpendiculer to grain direction

If the greater absolute value of the normal stresses at the top or bottom side in perpendicular
direction  of  the  grain  of  one  layer  is  tensile  stress  then  the  following  equation  should  be
fulfilled.

σ t ,90 ,d

f t ,90, d

+
∣σ m ,90 ,d∣

f m,90 , d

≤1.0 (Eq. 55)

5.8.1.3 Compression and bending parallel to grain direction

If the greater absolute value of the normal stresses at the top or bottom side in the grain direction
of one layer is compressive stress then the following two equations should be fulfilled.

∣σ c ,0 , d∣
f c ,0 ,d

≤1.0 (Eq. 56)

(
σ c ,0 , d

f c ,0 , d )
2

+
∣σ m,0 , d∣

f m ,0 ,d

≤1.0 (Eq. 57)
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Figure 11. - The meanings of the separation of compressive or tensile and the bending in-plane stresses in one
layer in case of strength check 
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5.8.1.4 Compression and bending perpendicular to grain direction

If the greater absolute value of the normal stresses at the top or bottom side in perpendicular
direction of the grain of one layer is compressive stress then the following two equations should
be fulfilled.

∣σ c ,90 ,d∣
f c ,90 ,d

≤1.0 (Eq. 58)

(
σ c ,90 , d

f c ,90 ,d )
2

+
∣σ m ,90 ,d∣

f m ,90, d

≤1.0 (Eq. 59)

5.8.2 Shear stresses from in-plane shear, torsion and transverse shear force

In this Chapter the design equations will be shown to the check the different shear stresses in
one layer. The meanings of the design values in the different directional shear stresses is given
in Fig. 12. In Fig. 10 we saw the meanings of the shear strength parameters.

5.8.2.1 Shear stresses from in-plane shear and torsion

The τxy,d shear stresses could come from in-plane shear force (nxy) and torsional moments (mxy) as
well, see Eq. 17a. The following equation should be fulfilled.

∣τ xy ,d∣
f xy , d

≤1.0 (Eq. 60)
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Figure 12 - The interpretation of the design shear stresses in one layer plank
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5.8.2.2 Shear stresses from transverse shear force parallel to grain direction

The  τxz,d  transverse  shear stresses could come from  transverse shear forces, see Eq. 17a. The
following equation should be fulfilled.

∣τ xz , d∣
f v , d

≤1.0 (Eq. 61)

5.8.2.3 Shear stresses from transverse shear force (rolling shear)

The  τyz,d transverse  shear stresses could come from  transverse shear forces, see Eq. 17a. This
shear stress is the so-called rolling shear. The following equation should be fulfilled.

∣τ yz ,d∣
f R, d

≤1.0 (Eq. 62)

5.8.3 Shear interaction formulas

During  the  design  process  depending  on  the  internal  force  state  there  can  be  interactions
between different stress types. These interaction formulas can be relevant in any point of one
layer,  therefor  in  FEM-Design  the  interaction  check  according  to  these  formulas  will  be
performed in  several  points  along the  thickness  of  one  layer  to  get  the  most  unfavourable
situation.

5.8.3.1 Summarized shear stresses parallel to grain direction

This checking formula is relevant if there are shear stresses from in-plane effect and transverse
shear effect parallel with grains (see Fig. 12). Basically this is the checking of the resultant shear
stress parallel with grains. The following equation should be fulfilled.

(
τ xy , d

f xy ,d )
2

+(
τ xz ,d

f v ,d )
2

≤1.0 (Eq. 63)

5.8.3.2 Perpendicular tensile normal stresses and rolling shear

This  checking formula  is  relevant  if  there are  rolling  shear  stress  and tensile  normal  stress
perpendicular to the grain direction. The following equation should be fulfilled.

σ t ,90 ,d

f t ,90, d

+
∣τ yz ,d∣

f R ,d

≤1.0 (Eq. 64)
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5.8.3.3 Perpendicular compressive normal stresses and rolling shear

This checking formula is relevant if there are rolling shear stress and compressive normal stress
perpendicular to the grain direction. The following equation should be fulfilled.

∣σ c ,90 ,d∣
f c ,90 ,d

+
∣τ yz , d∣

f R ,d

≤1.0 (Eq. 65)

5.8.4 Shear check at glued contact surface from rolling shear and torsion between layers

This design checking formula only active if the “shear coupling between layers” and “no glue at
narrow sides” option is adjusted (see Chapter 5.1) by the application data of the CLT panels. The
checking formula will be done in every layers top and bottom side if that side is an intermediate
side of the panel (no checking on the top and bottom side of the gross panel). In this Chapter the
design formula and the derivation of the formulas are based on Ref. [29][31-35].

∣τ tor ,d∣
f tor , d

+
∣τ yz , d

inplane∣+∣τ yz , d∣
f R ,d

≤1.0 (Eq. 66)

Below you can see the meanings and the calculation method of the members in Eq. 66.

The additional rolling shear stress (from in-plane effect) considers that there is no glue at the
narrow sides  of  the  boards  (planks).  In  this  case  the  increment  of  the  normal  force  in  the
longitudinal  (grain)  direction  of  the  adjacent  layers  should  be  transferred  along  the
perpendicular direction along the plank width of the examined layer. We calculate this effect
with the following formula: 

τ yz , d
inplane

=
Δ N y

a2 ≈

∂n y

∂ y
N−1

, (Eq. 67)

where  ΔNy is the normal force increment perpendicular to the grain direction of the examined
layer on  a2 area, where  a is the width of the plank (one board, see Fig. 13). This additional
rolling shear stress approximately equal to the mentioned value in Eq. 67, where ∂ny/∂y is the
perpendicular specific normal force derivatives in perpendicular direction of the grain and N is
the total number of the layers (see Ref. [33-34]).
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If there is no glue at the narrow sides of the boards (planks) there will be an additional torsional
effect between the adjacent layers (glued surface) which could cause failure.

To consider the additional torison effect on the glued surfaces between the planks we should
introduce the representative volume element (RVE) and the representative volume sub-element
(RVSE) of the CLT panel. The RVE is the smallest unit with thickness equal to a CLT element
and width and depth equal to the width of a board (plank) plus the half the width of possible
gaps between adjacent boards. In the case of CLT with constant layer thicknesses, the RVE is
further reduced to an elementary RVSE that represent the smallest unit cell at an intersection
between two orthogonal boards with an internal stress state describing the global bahaviour of
the CLT element (see Fig. 13-14 and Ref. [29][31-35]).

This additional torsional stress is calculated with the following formula:

τ tor , d =
3 nxy

a (N−1)
(Eq. 68)

This is comes from a torsional model on a square cross-section where the warping is restrained,
according to Ref. [31] and see the meanings of this torsional stress in Fig. 14 right side:

τ tor , d =
M tor , d

I p

a
2
=3τ 0, d

t i

a
=3

nxy

(N−1) ti

t i

a
=

3nxy

a (N−1)
(Eq. 69)

Here the polar moment of inertia:

I p=
a4

6
(Eq. 70)
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Figure 13 -  The meanings of the RVE and RVSE elements on a CLT panel
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The calculation of the  Mtor,d torsional moment (torque) is considering that the shear stresses
(nominal shear stress,  τ0,d see Fig.  14 left  side) from the  nxy in-plane internal force value in
reality not transferred along the narrow sides without glue and on the RVSE in reality the shear
stresses higher than the calculated shear stresses from a homogenized continuous section. The
τnet,d net shear stress (see Fig. 14 center) is greater than the τ0,d nominal shear stress.

The resultant of the τnet,d net shear stress along the two opposite sides of the RVSE is the Mtor,d

torsional moment:

M tor , d=2τ net ,d a
t i

2
a
2
=τ net , d a2 t i

2
=τ 0,d a2 ti (Eq. 71)

Where the increased net shear stress (τnet,d) according to the no glue effect at the narrow sides
assumed to be:

τ net , d=2τ 0, d (Eq. 72)

And the nominal shear stress (τ0,d) considering constant distribution of shear stresses along the
thickness of the CLT panel is the following:

τ 0,d=
nxya

(N−1)a t i

=
nxy

(N−1) t i

, (Eq. 73)

here the  ti   is the thickness of the RVSE element (see Fig. 13-14), but of course if the layers
thicknesses are the same, then this equal to one layer thickness.
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Figure 14 - The meanings of the nominal shear stress on RVSE (left side),
the meanings of the net shear stresses without glue at the narrow sides (center),

and the meanings of the additional torsional shear stress on the glued surface (right side)
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5.8.5 Buckling check 

There is no obvious buckling check information related to CLT panels in Eurocode 5. Using the
Eurocode methodology the proposed and implemented buckling method in FEM-Design is the
following. In EC5 Eq. 74 formula is given to verify a timber structure against buckling based on
the effective length method with a reduction factor on the compressive strength.

∣σ c ,0 , d
buckling∣

k c f c ,0 , d

+
∣σ m,0 , d

buckling∣
f m ,0 , d

≤1.0 , (Eq. 74)

where above the mentioned values the kc is a reduction factor on the compressive strength. 

Against the separation of bending and compressive stresses by the strength checking layer-by-
layer (see Fig. 11) here in Eq. 74 we need to use different separation of the compressive stresses
in the most unfavorable layer according to the EC5 methodology related to the timber buckling
analysis with Ayrton-Perry formula. In this case when we checking a layer in the grain direction
according to Eq. 74 we should consider a compressive stress which arise due to the membrane
strains at the mid-plane of the laminated composite (see Eq. 16) and the compressive bending
stress comes from that compressive stress which is above this compressive stress from mid-
plane strains. In the most simple case the stress separation can be seen in Fig. 15 but in a general
case it is detailed later.

With this stress separation method the buckling check will be adequate because this fits into the
EC5 methodology and because we will define the relative slenderness in a general way as well
(see also the verification example later). 

 

By a CLT panel – considering the laminated composite shell theory – this checking formula can
be interpreted in every layer and in an arbitrary direction. In FEM-Design the buckling check is
calculated with given consideration below. A precondition of this buckling check is that in the
specified  buckling  length  direction  at  the  given  point  the  specific  normal  force  should  be
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Figure 15 – The compressive stress separation in case of buckling analysis in an outer layer
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negative which means global compression in that direction. If this precondition is not fulfilled it
means that  the  flexural  stability  failure  is  not  relevant.  Furthermore  we assume that  lateral
torisonal buckling can not occur since CLT panel is a surface member.

Furthermore in FEM-Design the kc reduction factor determined with the method detailed in the
sub-chapters below.

5.8.5.1 The generalized relative slenderness

First of all in FEM-Design we provided a calculation method to get general relative slenderness
value  in  a  specific  direction.  The generalized  formula  of  the  relative  slenderness  based  on
Eurocode:

λ rel=√ A f
N cr

, (Eq. 75)

where in general A is the cross-sectional area, f is the compressive normal strength and Ncr is the
elastic  critical  force  considering  the  effective  length.  The  original  EC5  formula  to  timber
buckling analysis comes from this general relative slenderness formula as well.

If the critical elastic force is specific value and the cross-sectional area reduces to a thickness –
because now we are talking about shell behaviour  – the generalized relative slenderness turns
into the following equation:

λ rel=√∑i=1

N

t i f c ,α , k ,i

ncr

, (Eq. 76)

where ti is the thickness of the ith layer, fc,α,k,i is the characteristic compressive strength of the ith

layer in the direction of the given buckling length (see Fig. 16).

According to EC5 the compressive strength in an arbitrary direction using the strength in the
grain direction and perpendicular to grain direction can be formulated with Eq. 77.

f c ,α , k , i=
f c ,0 , k ,i

f c ,0 ,k ,i

f c ,90 , k ,i

sin2α i+cos2α i

, (Eq. 77)

where above the already mentioned values  αi is the angle between the  ith  layer  grain direction
and the given buckling length direction (see Fig. 16).

50



Theory of Laminated Composite Shells FEM-Design 19 

The whole homogenization procedure what was shown in Chapter 3 should be made in the
direction of the buckling direction, see Eq. 17-40. It means that the shell local system should be
replaced  in  the  transformations  with  the  direction  of  the  buckling  length  direction  and
perpendicular to it.  In this case with the aim of the homogenization method we can get the
relevant bending and shear stiffnesses in the direction of the buckling direction to calculate the
elastic critical specific force.

5.8.5.2 The calculation of the elastic critical force with shear deformation

Keep in mind that in the homogenization method all of the elastic parameters should be replaced
with its 5% quantile values:

E x ,05=r E x ,mean ;

E y ,05=r E y ,mean ;

G xy ,05=r G xy , mean ;

G xz ,05=r G xz , mean ;

G yz ,05=r G yz , mean , (Eq. 78)

where the r value is usually between 0.67-0.84. It is an input reduction factor in FEM-Design
design parameters by buckling calculation because it is not completely clarified in the standard
by a CLT panel .

By the calculation of the elastic critical force in the given buckling length direction we should
consider the effective buckling length and the shear deformations as well. Thus according to
Föppl summation rule the elastic critical force to the given buckling length direction of the CLT
panel  can  be  calculated  based  on  the  homogenization  in  the  buckling  length  direction
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Figure 16 – The αi directions between the grain directions (xi) of the layers and the buckling length direction;
and the ±45o angle range regarding the buckling length direction where the compressive strength reduction occurs
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considering characteristic values of the mentioned elastic parameters with Eq. 79.

ncr=
1

1

(D11
' π 2

(β L)2 )
+

1

S55
'

, (Eq. 79)

where D'11 represent the relevant specific bending stiffness (see Eq. 17a) of the panel and S'55 is
the relevant specific shear stiffness as well in the given buckling direction (see Eq. 17a). The L
is the geometric length between the two points where the buckling length direction intersects the
boundaries of the shell region (see Fig. 16). The β factor defines the effective buckling length
with L in the denominator, Lcr = β L.

5.8.5.3 Calculation of the reduction factor

After  the  calculation  of  the  relative  slenderness  the  reduction  factor  formulated  with  the
following well-known equations:

k=0.5(1+β c (λ rel −0.3)+λ rel
2
) (Eq. 80)

β c is the straightness parameter by CLT panels. There is no clear instruction in EC5 to this
parameter in case of CLT panels, therefore to be on the safe side, in FEM-Design β c=0.2 is
the default value but it is adjustable (see Fig. 17).

If λ rel≤0.3 no buckling check is necessary, else:

k c=
1

k+√k 2
−λ rel

2
(Eq. 81)

This  kc reduction factor in the function of the relative slenderness can be seen in Fig. 17 in
different β c  cases and the Euler buckling solution as well.
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With the aim of this reduction factor which will belong to the given buckling length direction as
a parameter of a structural behaviour we will consider this reduction factor in Eq. 74 by those
layers which directions are in the ±45o  angle range regarding the buckling length direction (see
Fig. 16).

5.8.5.4 The compressive stress separation by the buckling check in one specific layer

Here we show how we consider in a general direction the compressive stress separation what
was mentioned at the beginning of Chapter 5.8.5. Recalling Eq. 74 again:

∣σ c ,0 , d
buckling∣

k c f c ,0 , d

+
∣σ m,0 , d

buckling∣
f m ,0 , d

≤1.0 (Eq. 74)

In a general layer direction which is inside the mentioned ±45o angle range (see Fig. 16) first of
all we transform the mid-plane strains of the laminated shell from the shell local system into the
specific layer direction with the following formula:

[
ε 0x
ε 0y
γ 0xy

]=T (3x3)[
ε 0x '
ε 0y '
γ 0x ' y '

] , (Eq. 82)
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Figure 17 – The kc reduction factor in the function of relative slenderness
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where the transformation matrix comes from Eq. 18.

After this step the stress separations what was indicated in Fig. 15 can be made.

The compressive stress in grain direction for buckling analysis from mid-plane strains:

σ c ,0 , d
buckling

=Q11ε 0x+Q12ε 0y , (Eq. 83)

where Q11 and Q12  comes from Eq. 15a considering Table 5 as well.

The bending stress in grain direction for buckling analysis based on the previous equation:

∣σ m ,0 ,d
buckling∣=∣σ compressive ,0 , d

total ∣−∣σ c ,0 , d
buckling∣ (Eq. 84)

This  separation  differs  from  strength  check  separation  (see  Fig.  11  and  15)  because  the
methodology of buckling check in EC5 (Eq. 74) is originally comes from the well-know Ayrton-
Perry formula (see Ref. [36-37]) and this separation is necessary to get conform results with it.

5.9 Deflection design check in serviceablility limit state

In the engineering practice this topic causes misunderstandings because the Eurocode standard
and its national annexes are not always consistent by calculation of timber deflections. See Ref.
[38-39] about this topic. In Ref. [38] there is an explanation about the contradictions in the EN
1995-1-1 itself and compare with EN 1990.

The method according to EN 1990 and EN 1995-1-1 Chapter 2.2.3(3) is in FEM-Design to
avoid the contradictions and use consequent  solution to  get  the final deflections with creep
effect.

The  final deflection of timber structures in serviceability quasi-permanent load combination
should be performed with the following equation:

w fin=winst+wcreep=[∑j≥1

winst ,G , j+∑
i≥1

ψ 2,i winst , Q ,i](1+k defSq ) , (Eq. 85)

where  wfin is  the  final  deflection  in  SLS  quasi-permanent  load  combination,  winst is  the
instantaneous  deflection,  wcreep is  the  additional  deflection  from  creep  effect,  winst,G,j is  the
instantaneous deflection from jth permanent action, winst,Q,i is the instantaneous deflection from ith

variable action,  ψ2  is the factor for quasi-permanent value of a variable action and kdefSq is the
appropiate deformation factor

REMARK: In FEM-Design if  the  load  combinations  compiled  in  approriate  way by quasi-
permanent SLS load combinations then by the CLT panel application data the kdefSq (see Chapter
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5.5) should  be  adjusted  according to  Table  3  or  4  to  get  appropriate  final  deflections  with
accordance with Eq. 85.

EN 1995-1-1 chapter 2.2.3(2) said that the instantaneous deflections should be calculated based
on the characteristic load combination without any creep effect.

The  instantaneous  deflection in  serviceability  characteristic  load  combination  should  be
performed with the following way:

w inst=∑
j≥1

w inst ,G , j+w inst , Q ,1+∑
i>1

ψ0, i winst , Q, i , (Eq. 86)

where  winst is  the  instantaneous  deflection,  winst,G,j is  the  instantaneous  deflection  from  jth

permanent action,  winst,Q,i is the instantaneous deflection from  ith variable action and  ψ0 is the
factor for combination value of a variable action

In FEM-Design if the load combinations compiled in approriate way by a characteristic SLS
load combinations then by the CLT panel application data the kdefSc (see Chapter 5.5) should be
adjusted to 0 to get the appropriate  instantaneous deflections accordance with Eq. 86 because
that equation doesn't contain any creep effect, thus kdefSc = 0 is necessary by the settings.

5.10 Remarks on data of manufacturers and some recommendations

As you can see in the former chapters there are lot of parameters which are adjustable in FEM-
Design laminated composite shell (CLT application) modul. The CLT panel library was filled up
with data of some manufacturers about different types of panels and layer materials. To perform
a relevant calculation it  is necessary to use adequate elastic and strength properties as well.
According to empirical and practical issues we have made lot of application data and design
parameter option by the panel properties to fulfill all choice to follow what the manufacturer
provides during the homegization and the design calculation. The CLT panels are not in the
recent  Eurocode  5  directly,  therefore  there  are  several  opened  questions  in  the  mechanical
properties  and  design  properties  as  well,  and  we  hope  this  theory  book  and  the  indicated
references could give some guidance in the applicable data.  

If you have a CLT panel manufacturer's brochure you can directly fill up the CLT library with
the  relevant  CLT panel  layer  properties  to  get  a  more  adequate  calculation.  One  dominant
questionable thing by CLT products is the applied Poisson's ratio of the layer material which is
in reality obviously not zero. Another important issue is the glue at the narrow side which has
great effect at the final results and load-bearing behaviour of the CLT panel, thus please get the
information about it from the manufacturer of the applied CLT panel. 

RECOMMENDATION: If the product is glued at narrow side then we recommend to use the no
glue at narrow side option (see Chapter 5.1.2) in ULS because the load-bearing capacity can be
increased to neglect some unrelevant failure mode, but do not use the no glue at narrow side
option  in  SLS  because  the  deflections  can  be  reduced  with  this  way.  The  reason  of  this
recommendation is that in reality the behaviour of CLT panel could be non-linear and with this
settings we can use all advantages of the laminated composite shell theory.
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6 Verification examples 

6.1 Calculation of the homogenized shell material stiffness matrix

In the next sub-chapters of this example we will calculate the homogenized stiffness values with
different settings using the layer composition what you can see in Fig. 18. 

In the next calculations (and also by FEM-Design “Display stiffness” button) we will calculate
the stiffnesses relate to the mid-surface (center) of the shell layout composition. 

The co-ordinates of the edge of the different layers related to the mid-surface:

z=[
0.045
0.030
−0.010
−0.045

]m
If someone adjusts the kdef deformation factors by the panel properties in the different limit states
then the homogenization method will be the same but before the calculation the Young's moduli
and shear moduli will be divided with 1+kdef  and these reduced moduli will be the input values
of the homogenization method as it was stated in Chapter 5.5.

6.1.1 Calculation with shear coupling

In this sub-chapter we will show the stiffness calculation in case of shear coupling between the
layers when they are working together. In the first Chapter 6.1.1.1 we will show the calculation
with the glue at narrow side option, then in Chapter 6.1.1.2 with no glue at narrow side option. 
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Figure 18 – The adjusted layer composition
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6.1.1.1 Glue at narrow side

First of all we should calculate the material stiffness matrices of the layers interpreted in the
grain directions. 

Material of layer No. 1 and 3 are the same therefore these matrices are the same:

In-plane part:

[
Q11 Q 12 0
Q12 Q 22 0
0 0 Q66

]=[
E x

1−ν xy
2 E y

E x

ν xy

E y

1−ν xy
2 E y

E x

0

ν xy

E y

1−ν xy
2 E y

Ex

E y

1−ν xy
2 E y

Ex

0

0 0 G xy

]=
=[

11600

1−0.42 450
11600

0.4
450

1−0.42 450
11600

0

0.4
450

1−0.42 450
11600

450

1−0.42 450
11600

0

0 0 690
]=[11672 181.1 0

181.1 452.8 0
0 0 690]MPa

Transverse part:

[Q55 0
0 Q44

]=[G xz 0
0 G yz

]=[690 0
0 100]MPa

Layer No. 2:

In-plane part:

[
8000

1−0.42 270
8000

0.4
270

1−0.42 270
8000

0

0.4
270

1−0.42 270
8000

270

1−0.42 270
8000

0

0 0 500
]=[ 8043 108.6 0

108.6 271.5 0
0 0 500]MPa

Transverse part:

[Q55 0
0 Q44

]=[500 0
0 50]MPa
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According to Fig. 18 the grain direction of layer No. 1 and 3 are in the local x' direction of the
shell (0o orientation). It means that the previously calculated material stiffness will be the one
what we need to use during the homogenization: 

[
Q 11 Q12 Q 16

Q 12 Q22 Q 26

Q16 Q26 Q 66
]

1& 3

=[
11672 181.1 0
181.1 452.8 0

0 0 690]MPa

[Q55 Q45

Q45 Q44
]

1 & 3

=[690 0
0 100]MPa

But by layer No. 2 we can see that the grain direction is perpendicular to the  x' local system
direction (90o orientation).  Thus we should transform the material  stiffness into the local  x'
direction. With the transformation matrix in the theoretical desciption we will get:

[
Q 11 Q12 Q 16

Q 12 Q22 Q 26

Q16 Q26 Q 66
]

2

=[
271.5 108.6 0
108.6 8043 0

0 0 500]MPa

[Q55 Q45

Q45 Q44
]

2

=[50 0
0 500]MPa

After these steps we can calculate the ABD and shear part of the stiffness matrix.

The bending part:

Dij=
1
3
∑
k=1

N

(Qij )k ( zk
3
−zk+1

3
) (i, j = 1,2,6)

D11=
1
3
[11672(0.0453

−0.033
)+271.5(0.033

−(−0.013
))+11672((−0.01)3−(−0.045)3)]=

=0.6027
MNm2

m
=602.7kNm

D12=
1
3
[181.1(0.0453

−0.033
)+108.6 (0.033

−(−0.013
))+181.1((−0.01)3−(−0.045)3)]=

=0.01033
MNm2

m
=10.33kNm

D22=
1
3
[452.8(0.0453

−0.033
)+8043(0.033

−(−0.013
))+452.8((−0.01)3−(−0.045)3)]=

=0.09835
MNm2

m
=98.35 kNm

D66=
1
3
[690 (0.0453

−0.033
)+500 (0.033

−(−0.013
))+690((−0.01)3−(−0.045)3)]=

=0.04014
MNm2

m
=40.14kNm

58



Theory of Laminated Composite Shells FEM-Design 19 

In this case because the layers are orthogonal and the directions of orthotropy layer-by-layer
coincide with the local system of the shell:

D16=D26=0 .

The membrane part:

Aij=∑
k=1

N

(Q ij)k ( zk−zk+1) (i, j = 1,2,6)

A11=11672(0.045−0.03)+271.5 (0.03−(−0.01))+11672((−0.01)−(−0.045))=

=594.46
MN
m

=594460
kN
m

A12=181.1(0.045−0.03)+108.6(0.03−(−0.01))+181.1((−0.01)−(−0.045))=

=13.40
MN
m

=13400
kN
m

A22=452.8(0.045−0.03)+8043(0.03−(−0.01))+452.8((−0.01)−(−0.045))=

=344.4
MN
m

=344400
kN
m

A66=690(0.045−0.03)+500(0.03−(−0.01))+690((−0.01)−(−0.045))=

=54.5
MN
m

=54500
kN
m

In this case because the layers are orthogonal and the directions of orthotropy layer-by-layer
coincide with the local system of the shell:

A16=A26=0 .

Eccentricity part:

Bij=
1
2
∑
k=1

N

(Qij)k (z k
2
−z k+1

2
) (i, j = 1,2,6)

B11=
1
2
[11672(0.0452

−0.032
)+271.5(0.032

−(−0.012
))+11672((−0.01)2−(−0.045)2)]=

=−4.560
MNm

m
=−4560kN

B12=
1
2
[181.1(0.0452

−0.032
)+108.6 (0.032

−(−0.012
))+181.1((−0.012

)−(−0.0452
))]=

=−0.029
MNm

m
=−29 kN

B22=
1
2
[452.8(0.0452

−0.032
)+8043(0.032

−(−0.012
))+452.8((−0.01)2−(−0.045)2)]=

=3.036
MNm

m
=3036 kN
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B66=
1
2
[690(0.0452

−0.032
)+500 (0.032

−(−0.012
))+690 ((−0.01)2−(−0.045)2)]=

=−0.076
MNm

m
=−76kN

In this case because the layers are orthogonal and the directions of orthotropy layer-by-layer
coincide with the local system of the shell:

B16=B26=0 .

Shear part:

In this case the calculation of transverse shear stiffnesses is much easier than by a general case
(see the theory description also about this topic).

Here: [S55 S 45

S45 S 44
]=[S55 0

0 S 44
]

With the aim of the following equations first of all we should calculate the shear correction
factors in the main stiffness direction (and perpendicular to it) which now coincide with the
local system of the shell (see Fig. 18). 

The shear correction factors: 

ρ13=
R1

2

d 1∫
−

t
2

t
2 g1

2( z)

Q 55(z )
d z

=0.1638 ; ρ 23=
R2

2

d 2∫
−

t
2

t
2 g2

2(z )

Q 44(z )
d z

=0.8528

Based on these the shear stiffnesses:

S 55=ρ 13∑
k=1

N

(Q55)k (z k−zk+1)=

=0.1638[690(0.045−0.03)+50(0.03−(−0.010))+690 ((−0.01)−(−0.045))]=5979
kN
m

S 44=ρ 23∑
k=1

N

(Q44)k (zk−z k+1)=

=0.8528[100(0.045−0.03)+500(0.03−(−0.010))+100((−0.01)−(−0.045))]=21320
kN
m
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Thus the final homogenized laminated shell stiffnesses (in kNm, kN and kN/m):

[
602.7 10.33 0 −4560 −29 0 0 0
10.33 98.35 0 −29 3036 0 0 0

0 0 40.14 0 0 −76 0 0
−4560 −29 0 594460 13400 0 0 0
−29 3036 0 13400 344400 0 0 0

0 0 −76 0 0 54500 0 0
0 0 0 0 0 0 5979 0
0 0 0 0 0 0 0 21320

]
Fig. 19 shows the values based on FEM-Design. The values are the same.
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Figure 19 – The relevant stiffness values based on FEM-Design 
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6.1.1.2 No glue at narrow side

This calculation only differs from Chapter 6.1.1.1 that in the whole homogenization method the
Young's  moduli  of  the  layers  in  perpendicular  direction  to  the  grains  assumed  to  zero
independently from the input data, see Fig. 18.

Material of layer No. 1 and 3 are the same therefore these matrices are the same:

In-plane part:

[
Q11 Q 12 0
Q12 Q 22 0
0 0 Q66

]=[
E x

1−ν xy
2 E y

E x

ν xy

E y

1−ν xy
2 E y

E x

0

ν xy

E y

1−ν xy
2 E y

Ex

E y

1−ν xy
2 E y

Ex

0

0 0 G xy

]=
=[

11600

1−0.42 0
11600

0.4
0

1−0.42 0
11600

0

0.4
0

1−0.42 0
11600

0

1−0.42 0
11600

0

0 0 690
]=[11600 0 0

0 0 0
0 0 690]MPa

Transverse part:

[Q55 0
0 Q44

]=[G xz 0
0 G yz

]=[690 0
0 100]MPa

Layer No. 2:

In-plane part:

[
8000

1−0.42 0
8000

0.4
0

1−0.42 0
8000

0

0.4
0

1−0.42 0
8000

0

1−0.42 0
8000

0

0 0 500
]=[8000 0 0

0 0 0
0 0 500]MPa

Transverse part:

[Q55 0
0 Q44

]=[500 0
0 50]MPa

According to Fig. 18 the grain direction of layer No. 1 and 3 are in the local x' direction of the
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shell (0o orientation). It means that the previously calculated material stiffness will be the one
what we need to use during the homogenization. 

[
Q 11 Q12 Q 16

Q 12 Q22 Q 26

Q16 Q26 Q 66
]

1& 3

=[
11600 0 0

0 0 0
0 0 690]MPa

[Q55 Q45

Q45 Q44
]

1 & 3

=[690 0
0 100]MPa

But by layer No. 2 we can see that the grain direction is perpendicular to the  x' local system
direction (90o orientation). Thus we should transform the former material stiffness into the local
x' direction. With the transformation matrix in the theoretical description we will get:

[
Q 11 Q12 Q 16

Q 12 Q22 Q 26

Q16 Q26 Q 66
]

2

=[
0 0 0
0 8000 0
0 0 500]MPa

[Q55 Q45

Q45 Q44
]

2

=[50 0
0 500]MPa

After these steps we can calculate the ABD and shear part of the stiffness matrix.

The bending part:

Dij=
1
3
∑
k=1

N

(Qij )k ( zk
3−zk+1

3 ) (i, j = 1,2,6)

D11=
1
3
[11600(0.0453

−0.033
)+0(0.033

−(−0.013
))+11600 ((−0.01)3−(−0.045)3)]=

=0.5964
MNm2

m
=596.4 kNm

D22=
1
3
[0 (0.0453

−0.033
)+8000(0.033

−(−0.013
))+0((−0.01)3−(−0.045)3)]=

=0.07467
MNm2

m
=74.67 kNm

D66=
1
3
[690 (0.0453

−0.033
)+500 (0.033

−(−0.013
))+690((−0.01)3−(−0.045)3)]=

=0.04014
MNm2

m
=40.14kNm

D12=D16=D26=0 .
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The membrane part:

Aij=∑
k=1

N

(Q ij)k ( zk−zk+1) (i, j = 1,2,6)

A11=11600(0.045−0.03)+0 (0.03−(−0.01))+11600((−0.01)−(−0.045))=

=580
MN
m

=580000
kN
m

A22=0(0.045−0.03)+8000(0.03−(−0.01))+0((−0.01)−(−0.045))=

=320
MN
m

=320000
kN
m

A66=690(0.045−0.03)+500(0.03−(−0.01))+690((−0.01)−(−0.045))=

=54.5
MN
m

=54500
kN
m

A12=A16=A26=0 .

Eccentricity part:

Bij=
1
2
∑
k=1

N

(Qij)k (z k
2
−z k+1

2
) (i, j = 1,2,6)

B11=
1
2
[11600(0.0452

−0.032
)+0(0.032

−(−0.012
))+11600((−0.01)2−(−0.045)2

)]=

=−4.64
MNm

m
=−4640 kN

B22=
1
2
[0(0.0452

−0.032
)+8000(0.032

−(−0.012
))+0 ((−0.01)2−(−0.045)2)]=

=3.2
MNm

m
=3200kN

B66=
1
2
[690(0.0452

−0.032
)+500 (0.032

−(−0.012
))+690 ((−0.01)2−(−0.045)2)]=

=−0.076
MNm

m
=−76kN

B12=B16=B26=0 .

Shear part:

In this case the calculation of the shear correction is much easier than by a general case (see the
theory desciption also about this topic).

Here: [S55 S 45

S45 S 44
]=[S55 0

0 S 44
]
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With the aim of the following equations first of all we should calculate the shear correction
factors in the main stiffness direction (and perpendicular to it) which now coincide with the
local system of the shell (see Fig. 18).

The shear correction factors: 

ρ13=
R1

2

d 1∫
−

t
2

t
2 g1

2
( z)

Q 55(z )
d z

=0.1640 ; ρ 23=
R2

2

d 2∫
−

t
2

t
2 g2

2
(z )

Q44(z )
d z

=0.6667

Based on these the shear stiffnesses:

S 55=ρ 13∑
k=1

N

(Q55)k ( zk−zk+1)=

=0.1640 [690 (0.045−0.03)+50 (0.03−(−0.010))+690((−0.01)−(−0.045))]=5986
kN
m

S 44=ρ 23∑
k=1

N

(Q44)k ( zk−zk+1)=

=0.6667 [100(0.045−0.03)+500(0.03−(−0.010))+100((−0.01)−(−0.045)) ]=16668
kN
m

Thus the final homogenized laminated shell stiffnesses (in kNm, kN and kN/m):

[
596.4 0 0 −4640 0 0 0 0

0 74.67 0 0 3200 0 0 0
0 0 40.14 0 0 −76 0 0

−4640 0 0 580000 0 0 0 0
0 3200 0 0 320000 0 0 0
0 0 −76 0 0 54500 0 0
0 0 0 0 0 0 5986 0
0 0 0 0 0 0 0 16668

]  

Fig. 20 shows the values based on FEM-Design. The values are the same.
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Figure 20 – The relevant stiffness values based on FEM-Design 
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6.1.2 Calculation without shear coupling

In this  sub-chapter we will  show the stiffness calculation in case of without shear coupling
between the layers when they are NOT working together. In Chapter 6.1.2.1 we will show the
calculation with the glue at narrow side option, then in Chapter 6.1.2.2 with no glue at narrow
side option. 

6.1.2.1 Glue at narrow side

The material stiffness properties are the same layer-by-layer in the shell local system just like in
Chapter 6.1.1.1.

Layer No. 1 and 3:

[
Q 11 Q12 Q 16

Q 12 Q22 Q 26

Q16 Q26 Q 66
]

1& 3

=[
11672 181.1 0
181.1 452.8 0

0 0 690]MPa

[Q55 Q45

Q45 Q44
]

1 & 3

=[690 0
0 100]MPa

Layer No. 2:

[
Q 11 Q12 Q 16

Q 12 Q22 Q 26

Q16 Q26 Q 66
]

2

=[
271.5 108.6 0
108.6 8043 0

0 0 500]MPa

[Q55 Q45

Q45 Q44
]

2

=[50 0
0 500]MPa

Based on these information the ABD and shear part of the stiffness matrix can be calculated.

The bending part:

Dij=∑
k=1

N

(Q ij)k
(z k−zk+1)

3

12

D11=
1
12

[11672(0.045−0.03)3+271.5(0.03−(−0.01))3+11672 ((−0.01)−(−0.045))3]=

=0.04643
MNm2

m
=46.43 kNm

D12=
1

12
[181.1(0.045−0.03)3+108.6(0.03−(−0.01))3+181.1((−0.01)−(−0.045))3 ]=

=0.001277
MNm 2

m
=1.277 kNm
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D22=
1
12

[ 452.8(0.045−0.03)3+8043(0.03−(−0.01))3+452.8((−0.01)−(−0.045))3 ]=

=0.04464
MNm2

m
=44.64 kNm

D66=
1
12

[690 (0.045−0.03)3+500(0.03−(−0.01))3+690 ((−0.01)−(−0.045))3]=

=0.005325
MNm2

m
=5.325kNm

In this case because the layers are orthogonal and the directions of orthotropy layer-by-layer
coincide with the local system of the shell:

D16=D26=0 .

The membrane part:

Aij=∑
k=1

N

(Q ij)k ( zk−zk+1) (i, j = 1,2,6)

A11=11672(0.045−0.03)+271.5 (0.03−(−0.01))+11672((−0.01)−(−0.045))=

=594.46
MN
m

=594460
kN
m

A12=181.1(0.045−0.03)+108.6(0.03−(−0.01))+181.1((−0.01)−(−0.045))=

=13.40
MN
m

=13400
kN
m

A22=452.8(0.045−0.03)+8043(0.03−(−0.01))+452.8((−0.01)−(−0.045))=

=344.4
MN
m

=344400
kN
m

A66=690(0.045−0.03)+500(0.03−(−0.01))+690((−0.01)−(−0.045))=

=54.5
MN
m

=54500
kN
m

In this case because the layers are orthogonal and the directions of orthotropy layer-by-layer 
coincide with the local system of the shell:

A16=A26=0 .

Eccentricity part:

Bij=0 (i, j = 1,2,6)

Shear part:

In this case the calculation of the shear stiffnesses are similar than the calculation of the shear
stiffnesses by a homogeneous isotropic slab:
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S ij=
5
6
∑
k=1

N

(Qij )k ( zk−zk+1) (i, j = 4,5)

S 55=
5
6
[690(0.045−0.03)+50(0.03−(−0.010))+690((−0.01)−(−0.045))]=30417

kN
m

S 44=
5
6
[100(0.045−0.03)+500(0.03−(−0.010))+100((−0.01)−(−0.045))]=20833

kN
m

Thus the final homogenized laminated shell stiffnesses (in kNm and kN/m):

[
46.43 1.277 0 0 0 0 0 0
1.277 44.64 0 0 0 0 0 0

0 0 5.325 0 0 0 0 0
0 0 0 594460 13400 0 0 0
0 0 0 13400 344400 0 0 0
0 0 0 0 0 54500 0 0
0 0 0 0 0 0 30417 0
0 0 0 0 0 0 0 20833

]
Fig. 21 shows the values based on FEM-Design. The values are the same.
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Figure 21 – The relevant stiffness values based on FEM-Design 
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6.1.2.2 No glue at narrow side

The material stiffness properties are the same layer-by-layer in the shell local system just like in
Chapter 6.1.1.2.

Layer No. 1 and 3:

[
Q 11 Q12 Q 16

Q 12 Q22 Q 26

Q16 Q26 Q 66
]

1& 3

=[
11600 0 0

0 0 0
0 0 690]MPa

[Q55 Q45

Q45 Q44
]

1 & 3

=[690 0
0 100]MPa

Layer No. 2:

[
Q 11 Q12 Q 16

Q 12 Q22 Q 26

Q16 Q26 Q 66
]

2

=[
0 0 0
0 8000 0
0 0 500]MPa

[Q55 Q45

Q45 Q44
]

2

=[50 0
0 500]MPa

Based on these information the ABD and shear part of the stiffness matrix can be calculated.

The bending part:

Dij=∑
k=1

N

(Q ij)k
(z k−zk+1)

3

12

D11=
1
12

[11600(0.045−0.03)3+0(0.03−(−0.01))3+11600 ((−0.01)−(−0.045))3 ]=

=0.04471
MNm2

m
=44.71kNm

D22=
1
12

[0 (0.045−0.03)3+8000 (0.03−(−0.01))3+0((−0.01)−(−0.045))3 ]=

=0.04267
MNm2

m
=42.67kNm

D66=
1
12

[690 (0.045−0.03)3+500(0.03−(−0.01))3+690 ((−0.01)−(−0.045))3]=

=0.005325
MNm2

m
=5.325kNm

D12=D16=D26=0 .
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The membrane part:

Aij=∑
k=1

N

(Q ij)k ( zk−zk+1) (i, j = 1,2,6)

A11=11600(0.045−0.03)+0 (0.03−(−0.01))+11600((−0.01)−(−0.045))=

=580
MN
m

=580000
kN
m

A22=0(0.045−0.03)+8000(0.03−(−0.01))+0((−0.01)−(−0.045))=

=320
MN
m

=320000
kN
m

A66=690(0.045−0.03)+500(0.03−(−0.01))+690((−0.01)−(−0.045))=

=54.5
MN
m

=54500
kN
m

A12=A16=A26=0 .

Eccentricity part:

Bij=0 (i, j = 1,2,6)

Shear part:

In this case the calculation of the shear stiffnesses are similar than the calculation of the shear
stiffnesses by a homogeneous isotropic slab:

S ij=
5
6
∑
k=1

N

(Qij )k ( zk−zk+1) (i, j = 4,5)

S 55=
5
6
[690(0.045−0.03)+50(0.03−(−0.010))+690((−0.01)−(−0.045))]=30417

kN
m

S 44=
5
6
[100(0.045−0.03)+500(0.03−(−0.010))+100((−0.01)−(−0.045))]=20833

kN
m

Thus the final homogenized laminated shell stiffnesses (in kNm and kN/m):
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[
44.71 0 0 0 0 0 0 0

0 42.67 0 0 0 0 0 0
0 0 5.325 0 0 0 0 0
0 0 0 580000 0 0 0 0
0 0 0 0 320000 0 0 0
0 0 0 0 0 54500 0 0
0 0 0 0 0 0 30417 0
0 0 0 0 0 0 0 20833

]  

Fig. 22 shows the values based on FEM-Design. The values are the same.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst190x/models/9.4.2.1 Calculation of the 
homogenized shell material stiffness matrix.str
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Figure 22 – The relevant stiffness values based on FEM-Design 

http://download.strusoft.com/FEM-Design/inst190x/models/9.4.2.1%20Calculation%20of%20the%20homogenized%20shell%20material%20stiffness%20matrix.str
http://download.strusoft.com/FEM-Design/inst190x/models/9.4.2.1%20Calculation%20of%20the%20homogenized%20shell%20material%20stiffness%20matrix.str
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6.2 Deflection and stresses of a CLT panel supported on two opposite edges

In this  example we analyze a one-way CLT panel with beam-a-like behaviour  and material
properties to verify the calculation results compared with hand calculation. The geomtry (10 m x
2.45 m) and the total distributed load can be seen with the supports in Fig. 23.

The material properties are reduced to consider beam-a-like behaviour (see Fig. 24) and to better
comparison  between  the  FEM-Design  calculation  and  hand  calculation,  but  in  reality  the
Poisson's ratio and the Ey modulus by a CLT panel is not equal to zero. The grain direction of the
top layer is in the span direction.

The specific surface load in ULS:

qU=1. 35⋅0.9888+1.5⋅2=4.335kN /m 2

73

Figure 23 – The one-way CLT slab supported on two opposite edges, the longer direction is x'

Figure 24 – The layer compositions and the reduced material properties
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The maximum specific shear force at the support (calculated as a simply supported beam):

V max=qU
L
2
=

4.335⋅10
2

=21.68kN /m  

The FEM-Design result according to Fig. 20:

V max
FEM−Design

=21.67 kN /m

The maximum specific bending moment at mid-span:

M max=qU
L2

8
=4.335

102

8
=54.19 kNm /m  

The FEM-Design result according to Fig. 20:

M max
FEM −Design

=54.25kNm /m  

The relevant internal forces from FEM-Design can be seen in Fig. 25.

First we would like to calculate the relevant normal stress in the mid-span at the extreme fibers:

The relevant specific inertia (considering the 1st, 3rd,  5th and 7th layer), neglecting the lateral
layers (2nd , 4th and 6th):

I=2(2⋅0.033

12
+0.03⋅0.1052

+0.03⋅0.0352)=0.000744 m4
/m  

The maximum normal sress in grain direction at the extreme fibers:

σ c / t ,0 ,d
max

=
M max

I
t
2
=

54.19
0.000744

0.24
2

=8740 kPa=8.74MPa  
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Figure 25 – The specific shear force [qx'z' , kN/m] and the specific bending moment [mx' , kNm/m]
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The FEM-Design result according to Fig. 26:

σ max
FEM −Design

=8.75MPa

Second we would like to calculate the relevant transverse shear stress at the mid-plane (center of
the 4th layer) next to the support:

The specific maximum value of statical moment:

S max=0.03⋅0.105+0.03⋅0.035=0.0042m 3
/m

The maximum rolling shear at the mid-plane next to the support:

τ yz , d
center

=τ Rolling , d
max

=
V max S max

I b
=

21.68⋅0.0042
0.000744⋅1

=122.4 kPa=0.1224 MPa  

The FEM-Design result according to Fig. 26:

τ max
FEM−Design

=0.1224MPa  

Third we would like to calculate the deflection in SLS considering creep.

The specific surface load in SLS quasi-permanent combination:

qSq=0.9888+0.3⋅2=1.589kN /m2

The final deflection at mid-span considering creep and neglecting shear deformation:

w fin=
5

384
qsq L4

EI
(1+k defSq)=

5
384

1.589⋅104

11000000⋅0.000744
(1+0.8)=0.0455mm=45.5mm  

The FEM-Design result according to Fig. 27:

w fin
FEM −Design

=47.00 mm  

The results based on the hand calculation and FEM-Design are identical except the deflection
because in FEM-Design the shear deformations are also considered, therefore the maximum
deflection at the mid-span is a bit larger compared to the hand calculation.
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Figure 26 – The normal stresses in the span direction at the mid-span and the relevant transverse shear stresses
next to the support based on FEM-Design calculation
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Download link to the example file:

http://download.strusoft.com/FEM-Design/inst190x/models/9.4.2.2 Deflection and stresses of a
CLT panel supported on two opposite edges.str
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Figure 27 – The deflections in the SLS combination [mm]

http://download.strusoft.com/FEM-Design/inst190x/models/9.4.2.2%20Deflection%20and%20stresses%20of%20a%20CLT%20panel%20supported%20on%20two%20opposite%20edges.str
http://download.strusoft.com/FEM-Design/inst190x/models/9.4.2.2%20Deflection%20and%20stresses%20of%20a%20CLT%20panel%20supported%20on%20two%20opposite%20edges.str
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6.3 Deflection and stresses of a CLT simply supported two-way slab

By this verification example we calculated a simply supported two-way CLT slab (7m x 5m)
with uniformly distributed load (see Fig. 28).

The layer composition with the mechanical properties can be seen in Fig. 29. The grain direction
of the top layer is in the longer direction of the slab (see also Fig. 28). The total thickness is t =
240  mm.  During  the  calculation  we  considered  shear  coupling  between  layers  and  glue  at
narrow sides.
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Figure 28 – The geometry of the considered plate with the uniformly distributed load

Figure 29 – The layer composition with the thicknesses and material parameters
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The considered  combination is  a  ULS combination,  thus  kdefU  = 0.  The design  value of  the
considered value of the uniformly distributed surface load contains the self-weigth of the CLT
panel and a variable load:

qU=1.35( 420
1000

9.81⋅0.24)+1.5⋅2=4.335
kN
m2

We compared different FEM-Design results with ANSYS shell281 multilayer element results.

Fig. 30 shows the applied finite element mesh size, the average element size was 0.36m.

Fig  31.  shows  the  deflection  colour  palette  results.  The  maximum  deflection  from  the
calculations:

wmax
FEM −Design

=5.785mm ; wmax
ANSYS

=5.786mm

Practically the results are the same.
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Figure 30 – The finite element mesh of the plate in FEM-Design (left) and in ANSYS (right)

Figure 31 – The deflections of the plate in FEM-Design (left, in [mm]) and in ANSYS (right, in [m])
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The normal stress at the bottom of the lowermost layer in the x' direction in shell local system:

σ x' bottom
FEM −Design

=1.302MPa ; σ x' bottom
ANSYS

=1.303MPa

The results are the same, see Fig. 32.

The normal stress at the bottom of the lowermost layer in the y' direction in shell local system:

σ y ' bottom
FEM −Design

=0.09774 MPa ; σ y ' bottom
ANSYS

=0.09771MPa

The results are the same, see Fig 33.
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Figure 32 – The σx' stresses at the bottom of the lowermost layer in FEM-Design (left, in [MPa]) and in ANSYS
(right, in [kPa])

Figure 33 – The σy' stresses at the bottom of the lowermost layer in FEM-Design (left, in [MPa]) and in ANSYS
(right, in [kPa])
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The in-plane shear stress at the bottom of the lowermost layer in shell local system:

τ x' y ' bottom
FEM−Design

=0.2380MPa ; τ x' y ' bottom
ANSYS

=0.2442 MPa

The difference between the results is about 2.5%, see Fig. 34.

The normal stress at the top of the second layer from above in the  y' direction in shell local
system:

σ y ' top
FEM −Design

=−1.992 MPa ; σ y ' top
ANSYS

=−1.993MPa

The results are the same, see Fig. 35.
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Figure 35 – The σy' stresses at the top of the second layer counted from the top in FEM-Design (left, in [MPa])
and in ANSYS (right, in [kPa])

Figure 34 – The τx'y' stresses at the bottom of the lowermost layer in FEM-Design (left, in [MPa]) and in ANSYS
(right, in [kPa])
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The transverse shear stresses at the middle ot the slab (center of the 4th layer) in x'z' direction in
shell local system:

τ x' z ' middle
ANSYS

=0.05865MPa ; τ x' z ' middle
ANSYS

=0.05864 MPa

The results are the same, see Fig. 36.

The transverse shear stresses at the middle ot the slab (center of the 4th layer) in y'z' direction in
shell local system:

τ y ' z ' middle
ANSYS

=0.07181MPa ; τ y ' z ' middle
ANSYS

=0.07199MPa

The difference between the results is about 2.5%, see Fig. 37.
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Figure 36 – The τx'z' stresses at the middle of the slab (at the center of the 4th layer) in FEM-Design (left, in
[MPa]) and in ANSYS (right, in [kPa])

Figure 37 – The τy'z' stresses at the middle of the slab (at the center of the 4th layer) in FEM-Design (left, in
[MPa]) and in ANSYS (right, in [kPa])
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Based  on  the  comparisons  of  the  mentioned  results  we  can  say  that  FEM-Design  results
considering the laminated composite shell mechanical model by a two-way slab gives adequate
results.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst190x/models/9.4.2.3 Deflection and stresses of a 
CLT simply supported two-way slab.str
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http://download.strusoft.com/FEM-Design/inst190x/models/9.4.2.3%20Deflection%20and%20stresses%20of%20a%20CLT%20simply%20supported%20two-way%20slab.str
http://download.strusoft.com/FEM-Design/inst190x/models/9.4.2.3%20Deflection%20and%20stresses%20of%20a%20CLT%20simply%20supported%20two-way%20slab.str
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6.4 In-plane loaded CLT design check to shear failure at glued contact surface

In this example we will verify the FEM-Design design formulas in case of an in-plane loaded
CLT  panel  according  to  Chapter  5.8.4  and  compare  the  FEM-Design  results  with
analytical/experimental data, see Ref. [40-41].

The  calculated  static  layout  can  be  seen  in  Fig.  38.  The  applied  force  is  F=237  kN (thus
F/2=118.5 kN, see Fig. 38. and Ref. [40]). The CLT here is an in-plane loaded panel with the
following layer composition and material parameters, see Fig. 33-34. You can see in Fig. 38 that
the applied plank (board) width is  a = 150 mm and the number of the layers  N = 3. In FEM-
Design calulation we use the No glue at narrow side option to reach this shear failure formula
by the detailed results.
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Figure 39 – The layer composition with the thicknesses and the applied material parameters

Figure 38 – The geometry, the loads and the analyzed RVE in case of in-plane loaded panel
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The applied material and strength parameters are according to Ref. [40] to get more comparable
results in the end. Fig. 40 shows a complete model about the problem, but according to the point
supports and forces in this model there is going to be singularities which prevent the comparison
between the FEM-Design calculation result with the benchmark reference values, therefore only
a small  section including section A-A (indicated with red box in Fig. 40) was modeled and
loaded with the relevant internal force system assumed as an equilibrium force system with
statically determinant supports (see the downloadable sample file below).

Thus the verification of failure of the glued contact surface will be performed in Section A-A,
see Fig. 40.

First of all in FEM-Design the additional torsional stress at the glued surface in the mentioned
RVE:

τ tor , d =
3 nxy

a (N−1)
=

3⋅264.65
0.15(3 −1)

=2646.5 kPa=2.647MPa ,

where  the  nxy  value  is  the  in-plane  specific  shear  force  in  the  model,  in  the  middle  of  the
analyzed RVE, see Fig. 41 also.

According to Chapter 5.8.4 the relevant failure in this example will be at the surface of the
vertical middle planks. At the RVE element the nx' specific normal force in the shell local system
(see.  Fig.  42)  will  be  the  ny value  of  the  middle  vertical  board  specific  normal  force
perpendicular to the grain (see Fig 38-39).
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Figure 40 – The applied boundary conditions and the FE mesh

Figure 41 – The distribution of nx'y' specific internal forces in the local system of the shell in FEM-Design [kN/m]
the shell local x' direction is the horizontal and the shell local y' direction is the vertical one
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The  additional  rolling  shear  at  the  glued  surface  in  the  middle  vertical  layer  will  be  the
following (see Fig. 42):

τ yz , d
inplane

=
Δ N y

a2 ≈

∂n y

∂ y
N−1

=

∣(518.3)+(74.15)
2

−
(691.3)+(98.67)

2 ∣
0.15
3−1

=329.2 kPa=0.3292MPa  

According to the mentioned design formula in Chapter 5.8.4 the following interaction should be
checked, Fig. 42 also shows this interaction formula based on FEM-Design detailed result:

∣τ tor ,d∣
f tor , d

+
∣τ yz , d

inplane∣
f R ,d

=
2.647
3.5

+
0.3292

1.5
=0.9758≤1.0  

Based on Ref [40] results and the analytical theory in Ref. [41-42] the reference value of this
utilization: 

∣τ tor ,d∣
f tor , d

+
∣τ yz , d

inplane∣
f R ,d

=
2.686

3.5
+

0.25
1.5

=0.9341≤1.0

The literature data and the FEM-Design results are very close to each other, the difference in the
interaction formula is smaller than 5 %.
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Figure 42 – Top: The distribution of nx specific internal forces in the local system of the shell [kN/m]
this specific normal force if perpendicular to the middle layer grain direction

Bottom: The relevant in-plane loaded torsion interaction formula in FEM-Design
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Download link to the example file:

http://download.strusoft.com/FEM-Design/inst190x/models/9.4.2.4 In-plane loaded CLT design 
check to shear failure at glued contact surface.str
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http://download.strusoft.com/FEM-Design/inst190x/models/9.4.2.4%20In-plane%20loaded%20CLT%20design%20check%20to%20shear%20failure%20at%20glued%20contact%20surface.str
http://download.strusoft.com/FEM-Design/inst190x/models/9.4.2.4%20In-plane%20loaded%20CLT%20design%20check%20to%20shear%20failure%20at%20glued%20contact%20surface.str
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6.5 Buckling check of a CLT wall

Let's consider the following layer composition in Fig. 43, with the given elastic and strength
parameters.

The load-duration class is permanent thus the applied kmod =0.6 and γM=1.25.

With this CLT panel we built a wall with L height and 4 m width, applied a constant distributed
load on the top edge of the wall and a surface distributed load perpendicular to the panel as you
can see in Fig. 44-45. The boundary condition was simply supported. The planks are vertical at
the outer layers.

In the first part (case a) ) of this verification example we analyzed different height walls (L =
1,2,3,5 and 7.5 m) with only theoretically centric load (F = 543.73 kN/m; 417 kN/m; 274.84
kN/m; 123 kN/m; and 60 kN/m respectively;  q  = 0) on the top edge. Here the FEM-Design
calculation  method  will  be  shown  firstly  with  the  mentioned  buckling  calculation  method
(Chapter  5.8.5,  effective length method with reduction factor)  in  details.  After  the buckling
utilizations what we get from FEM-Design calculation we show a comparison with GMNIA
(geometric and material  non-linear analysis  with imperfections) with the aim of a structural
multphysics program. Nowadays the GMNIA is the most precise engineering method to get the
load bearing capacity of a structure with numerical simulation. By the verification we used in
this  other  program solid  finite  elements  to  model  more  realistic  structural  behaviour  with
GMNIA.
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Figure 43 – The layer composition with the thicknesses and the applied material parameters
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In the second part (case b) ) we show the behaviour in case of  L=3m height with different
vertical and horizontal loads (F = 274.84 kN/m; 252 kN/m; 234.99 kN/m; 208.33 kN/m; 171.53
kN/m; and 130.5 kN/m ;  q  = 0; 0.84 kN/m2; 1.567 kN/m2; 2.778 kN/m2; 4.574 kN/m2; 6.96
kN/m2  respectively). First the FEM-Design calculation method will be shown in details. After
the buckling utilizations what we get from FEM-Design calculation we show a comparison with
GMNIA with the same way what was introduced in case a).
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Figure 45 – The simplified static system to the effective length reduction factor method (left) 
and to the GMNIA (right)
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Figure 44 – The CLT wall model in FEM-Design
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Case a)

In case of centric loading (see Fig. 44-45,  q=0) the analyzed height and centric loads of the
walls:

L [m] F [kN/m] q [kN/m2]

1 543.7 0.0

2 417.0 0.0

3 274.8 0.0

5 123.0 0.0

7.5 60.00 0.0

Based on the layers material elastic properties in Fig. 43 and with the buckling length we would
like to calculate the relative slenderness and the reduction factor. The  r  reduction factor what
was mentioned in Chapter 5.8.5 will help us to provide the characteristic values of the elastic
properties to get the relative slenderness with the aim of the composite shell homogenization.
The adjusted reduction factor on the elastic properties here was:  r  = 0.8333 (which is usually
accepted by glue laminated or CLT products). 

E x ,05=r E x ,mean=0.8333⋅11000=9170MPa ,

E y ,05=r E y ,mean=0.8333⋅370=308MPa ,

G xy ,05=r G xy , mean=0.8333⋅690=575MPa ,

G xz ,05=r G xz , mean=0.8333⋅690=575MPa ,

G yz ,05=r G yz , mean=0.8333⋅69=57.5 MPa .

From the FEM-Design laminated composite homogenization method in the background with the
characteristic elastic modulus values based on Chapter 3.2 we get the following stiffness value
to get the elastic critical force of the CLT panel:

D11
'
=614

kNm2

m
as the relevant specific bending stiffness and

S 55
'
=8943 kN /m as the relevant specific shear stiffness.

Based on these stiffnesses we can get the elastic critical forces which depends on the buckling
length of the panel. In the first part of this example we will analyze theoretically centrically
loaded panels with different buckling lengths. The β factors are 1.0 because the wall was simply
supported but the height of the walls are different. Thus the elastic critical forces are as follows:
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ncr
1m
=

1
1

(D11
' π 2

(β L)2 )
+

1

S 55
'

=
1

1

( 614π 2

(1.0⋅1)2)
+

1
8943

=3612
kN
m

 

ncr
2m
=

1
1

(D11
' π 2

(β L)2 )
+

1

S55
'

=
1

1

( 614π 2

(1.0⋅2)2)
+

1
8943

=1296
kN
m

 

ncr
3m
=

1
1

(D 11
' π 2

(β L)2 )
+

1

S55
'

=
1

1

( 614π 2

(1.0⋅3)2)
+

1
8943

=626.2
kN
m

 

ncr
5m
=

1
1

(D11
' π 2

(β L)2 )
+

1

S 55
'

=
1

1

( 614π 2

(1.0⋅5)2)
+

1
8943

=236
kN
m

 

ncr
7.5m

=
1

1

(D11
' π 2

(β L)2)
+

1

S55
'

=
1

1

( 614π 2

(1.0⋅7.5)2)
+

1
8943

=106.5
kN
m

 

Based on these elastic critical force values the relative slenderness could be calculated with the
aim of the given data:

The thickness of the different layers:

t 1=t 2=t 3=t 4=t5=20 mm=0.020m

The characteristic compression strength in the grain and perpendicular to grain direction:
f c ,0 , k ,1= f c ,0 , k ,2= f c ,0 ,k ,3=21000kPa

f c ,90 , k ,2= f c ,90 , k ,4=2500 kPa

The generalized relative slenderness:

λ rel=√∑i=1

N

t i f c ,α , k ,i

ncr

, 

according to this equation the relative slenderness for the different height walls are as follows.

90



Theory of Laminated Composite Shells FEM-Design 19 

λ rel
1m=√∑i=1

N

t i f c ,α , k ,i

ncr
1m =√ 3⋅0.02⋅21000+2⋅0.02⋅2500

3612
=0.6136  

Similarly with the other lengths:

λ rel
2m
=1.024 ; λ rel

3m
=1.474 ; λ rel

5m
=2.401 ; λ rel

7.5m
=3.574

According to the used Ayrton-Perry formula in EC5 the reduction factor calculation:

k=0.5(1+β c (λ rel −0.3)+λ rel
2
)  

k c=
1

k+√k 2
−λ rel

2
 

In  these  examples  we  used  here β c=0.1 straightness  factor,  but  it  is  adjustable  in  FEM-
Design.

The reduction factors are as follows according to the previous equations and data:

k c
1m
=0.9534 ; k c

2m
=0.7483 ; k c

3m
=0.4210 ; k c

5m
=0.1662 ; k c

7.5m
=0.07617

The table below summarizes the calculated values by the different cases.

βc = 0.1

L [m] ncr [kN/m] λrel [-] k [-] kc [-]

1 3612 0.6136 0.7039 0.9534

2 1296 1.024 1.060 0.7483

3 626.2 1.474 1.645 0.4210

5 236.0 2.401 3.487 0.1662

7.5 106.5 3.574 7.050 0.07617

To  calculate  the  buckling  utilizations  it  is  necessary  to  define  the  design  values  of  the
compressive and bending strengths. The design values of the compressive and bending strength
of the layers: 

f c ,0 , d=k mod

f c ,0 ,k
γ M

=0.6
21

1.25
=10.08 MPa  

f m ,0 ,d=k mod

f m ,0 ,k
γ M

=0.6
24

1.25
=11.52MPa  
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Fig. 46. shows the relevant stress results layer-by-layer from FEM-Design in the CLT panels
with the given heights and loads.

With the calculated reduction factors the buckling utilization of the different height walls with
the different centric loads (based on Fig. 46) in the grain directions of the relevant layers: 

Util1m
=
∣σ c ,0 , d

buckling∣
k c f c ,0 , d

+
∣σ m,0 , d

buckling∣
f m ,0 , d

=
∣−8.866∣

0.9534⋅10.08
+

0
11.52

=0.9226

Util2m
=
∣σ c ,0 ,d

buckling∣
k c f c ,0 ,d

+
∣σ m,0 , d

buckling∣
f m,0 , d

=
∣−6.799∣

0.7483⋅10.08
+

0
11.52

=0.9014

Util3m
=
∣σ c ,0 ,d

buckling∣
k c f c ,0 , d

+
∣σ m,0 , d

buckling∣
f m,0 , d

=
∣−4.481∣

0.4210⋅10.08
+

0
11.52

=1.056

Util5m
=
∣σ c ,0 , d

buckling∣
k c f c ,0 , d

+
∣σ m,0 , d

buckling∣
f m ,0 , d

=
∣−2.006∣

0.1662⋅10.08
+

0
11.52

=1.197  

Util7.5m
=
∣σ c ,0 ,d

buckling∣
k c f c ,0 ,d

+
∣σ m,0 ,d

buckling∣
f m,0 , d

=
∣−0.9783∣

0.07617⋅10.08
+

0
11.52

=1.274  
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Figure 46 – The relevant normal stress distribution in the five different height walls with the given centric loads
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After we have these utilization values we have made GMNIA analysis with an other software to
make a comparison between the proposed practically usable effective length reduction factor
method  what  was  implemented  in  FEM-Design  and  one  of  the  most  precise  numerical
simulation method.

In  the  GMNIA the  used  finite  elements  were  solid  elements  and  the  material  model  was
orthotropic with the given nonlinear stress-strain models in Fig. 47 layer-by-layer.

In the GMNIA the adjusted elastic moduli were the following according to Ref. [41]:

E0,d=0.8
E x ,05
γ M

=0.8
0.84⋅11000

1.25
=5914 MPa  

E90,d=0.8
E y ,05
γ M

=0.8
0.84⋅370

1.25
=198.9 MPa   

G xy , d=0.8
G xy ,05
γ M

=0.8
0.84⋅690

1.25
=370.9MPa

G xz , d=0.8
G xz ,05
γ M

=0.8
0.84⋅690

1.25
=370.9 MPa

G yz , d=0.8
G yz ,05
γ M

=0.8
0.84⋅69

1.25
=37.09MPa

The plastic limit values can be seen in Fig. 47, despite of the behaviour is symmetric in tension
and  compression  the  calculation  is  adequate  because  the  analyzed  cases  are  mainly  under
compression and on the tensioned side the values were not above the tension plastic limit at the
failure load of GMNIA. It is important to note because it is very well-known that the timber
material shows brittle fracture under pure tension, see Ref. [41].
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Figure 47 – The considered non-linear stress-strain model by GMNIA  
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By GMNIA another important question is the right consideration of the imperfections. 

First  of  all  a  global  initial  sway  was  considered,  see  Fig.  45  right  side.  The  initial  sway
according to the Eurocode was:

ϕ=α h
1

200
; where α h=

2

√L
but 2/3≤α h≤1.0 where L is the wall height.

Secondly it is necessary to consider an initial bow imperfection with its design value. This value
is very important because it should contain not only the geometrical bow imperfection of the
member but also other imperfections such as the material and load (eccentricity). According to
the EC5 and Ref. [46-47] an adequate design value of the initial bow imperfection is:

e imp=
L

300
, where L is the wall height.

With these given values we performed the GMNIA with an independent software based on solid
finite elements.

The given centric specific loads in case a) were the load-bearing capacity of the different height
walls according to the GMNIA. Fig. 48 shows the back-calculated reduction factor values based
on GMNIA.

Based on the  fact  that  the  reduction  factor  curves  in  Eurocode  comes  from stochastic  and
empiric calculation we can say that the results of the proposed FEM-Desing buckling check
method are very close to the GMNIA. The results are closer to each other if we consider that the
practically relevant relative slenderness is up to around 2.0 here. 
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Figure 48 – The results of GMNIA in centic compression case compared to the proposed FEM-Design method 
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Fig. 49 shows the load-displacement curves from GMNIA. It is worth noting that by the first
two short wall height (1 and 2 m) the load-displacement curves are almost straight, which means
that the failure is close to the strength failure as expected. By the  L = 3 m according to the
results the failure is a mixture between the stability and strength failure. By the last two cases (5
and 7.5 m) the failure mode is stability failure which is obvious from Fig. 49.
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Figure 49 – The results of GMNIA – The applied vertical force versus 
the lateral displacement of the mid-section of the wall
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Case b)

In this case the height of the wall was constant, but we increased the lateral loads on the wall as
well. 

The analyzed cases can be seen in the table below where we indicated the applied height of the
wall and furthermore the applied vertical and later loads (see Fig. 44-45). 

L [m] F [kN/m] q [kN/m2]

3 274.8 0.0

3 252.0 0.840

3 235.0 1.567

3 208.3 2.778

3 171.5 4.574

3 130.5 6.960

Fig. 50 shows the relavant stress distribution in the walls under the different load conditions at
the mid-section of the walls.

In case a) we calculated based on the proposed FEM-Design method the reduction factor to the
3 m height wall, thus we used that value by these calculations as well. The buckling utilizations
of the walls with the different vertical and lateral loads by the six different load situations are as
follows based on Fig. 45 and the mentioned stress separation in Chapter 5.8.5.4:
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Figure 50 – The relevant normal stress distribution in the six different cases with the given centric and lateral
loads
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Util1
=
∣σ c ,0 ,d

buckling∣
k c f c ,0 , d

+
∣σ m ,0 , d

buckling∣
f m,0 , d

=
∣−4.481∣

0.4210⋅10.08
+

0
11.52

=1.056  

Util2
=
∣σ c ,0 , d

buckling∣
kc f c ,0 ,d

+
∣σ m ,0 ,d

buckling∣
f m,0 ,d

=
∣−4.109∣

0.4210⋅10.08
+

0.707
11.52

=1.030

Util3
=
∣σ c ,0 ,d

buckling∣
k c f c ,0 ,d

+
∣σ m,0 , d

buckling∣
f m,0 , d

=
∣−3.832∣

0.4210⋅10.08
+

1.319
11.52

=1.017  

Util4
=
∣σ c ,0 , d

buckling∣
k c f c ,0 , d

+
∣σ m ,0 ,d

buckling∣
f m ,0 ,d

=
∣−3.397∣

0.4210⋅10.08
+

2.339
11.52

=1.004  

Util5
=
∣σ c ,0 ,d

buckling∣
k c f c ,0 , d

+
∣σ m,0 , d

buckling∣
f m,0 , d

=
∣−2.797∣

0.4210⋅10.08
+

3.853
11.52

=0.9936  

Util6
=
∣σ c ,0 ,d

buckling∣
k c f c ,0 ,d

+
∣σ m,0 ,d

buckling∣
f m,0 , d

=
∣−2.128∣

0.4210⋅10.08
+

5.861
11.52

=1.010  

To verify these utilizations we performed GMNIA with the same input parameters what were
used in case a) but we modified the loads.  The given load situations in case b) were the load-
bearing capacities of the analyzed walls based on GMNIA. Fig. 51 shows the load-displacement
curves  of  the  analyzed  walls.  Do  not  forget  that  by  these  vertical  loads  there  were
simultaneously increasing lateral loads as well on the walls during the calculation.

According  to  these  information  we  can  say  that  the  utilizations  of  FEM-Design  proposed
calculation are very close to GMNIA results. We can conclude that FEM-Design provides an
adequate stability calculation method in its new CLT modul design calculation.
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Download link to the example file:

Case a):

http://download.strusoft.com/FEM-Design/inst190x/models/9.4.2.5 Buckling check of a CLT 
wall case a.str

Case b):

http://download.strusoft.com/FEM-Design/inst190x/models/9.4.2.5 Buckling check of a CLT 
wall case b.str
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Figure 51 – The results of GMNIA – The applied vertical force versus 
the lateral displacement of the mid-section of the wall
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http://download.strusoft.com/FEM-Design/inst190x/models/9.4.2.5%20Buckling%20check%20of%20a%20CLT%20wall%20case%20a.str
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