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List of symbols

C damping matrix

f i i-th eigenfrequency

K stiffness matrix

Lp path length

M(t) diagonal (lumped) mass matrix (in function of time)

Mg constant mass matrix based on the converted constant loads

Mm(t) mass matrix of the moving load in function of time

n division number of the path

q(t) excitation force vector in function of time (moving load)

t time

T time period

v velocity of the moving loads

x(t) displacement vector in function of time

ẋ ( t)    velocity vector in function of time

ẍ ( t)    acceleration vector in function of time

xi,dyn vertical dynamic translational displacement of the i-th node  

xi,stat vertical static translational displacement of the i-th node

xj,stat maximum vertical static translational displacement on the path

α Rayleigh damping matrix coefficient

β Rayleigh damping matrix coefficient

Δs path step

Δt time step

ξi critical damping ratio of the i-th eigenfrequency

ωi i-th angular natural frequency
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1 Dynamic effect calculation of moving load

1.1 The purpose of this type of moving load dynamic calculation

Calculation of the dynamic effect of loads (masses) which are moving on bridges, overpasses or
anywhere. On a pre-defined path the load (mass) or load groups (masses) are moving along the
structure with constant specific velocity. This kind of excitation will result a dynamic response
of the structure. The result by this calculation method is primarily the calculation of the dynamic
factor, but also the dynamic displacements and accelerations on the structure. See EN 1991-2
about actions on structures as well.

1.2 The solution method of the dynamic differential equation system

The second order linear inhomogeneous differential equation system is the following, see Ref.
[1]:

M ẍ (t)+C ẋ (t)+K x( t)=q(t ) ,

where  M  is the diagonal mass matrix of the permanent loads, mass points and optionally the
mass of the moving load.  C  is the so-called Rayleigh damping matrix.  K  is the linear global
structural stiffness matrix.  q(t) is the load vector calculated at  t  time based on the specified
moving loads. x(t) is the displacement vector at time t . ẋ ( t) is the velocity vector at time t .

ẍ ( t) is the acceleration vector at time t .

The solution of the differential equation of motion is achieved by the direct integration method.
The used integration  rule  is  the  so-called  Newmark or  Wilson-Θ method depending on the
settings and according to Ref. [2]. 

1.3 The mass matrix

Usually the mass matrix only contains the mass of the structure. It is also possible to consider
the  mass  of  the  moving load.  It  is  an  adjustable  settings  by the  setup  of  the  moving load
calculation in FEM-Design. In this case the mass matrix is as follows:

M ( t)=M g+M m(t ) ,

where Mg is the mass matrix calculated from the weight of the structure (mainly from permanent
loads)  which  is  constant  during the  calculation  (time independent).  Mm(t)  is  a  mass  matrix
calculated in each position of the moving load.

NOTE: Mass of the moving load should be considered only if the value of the moving weight is
equal to or greater than 10% of the weight of the structure. The time-dependent mass matrix
significantly increases the computational time.
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1.4 The Rayleigh damping matrix

The  so-called  Rayleigh  damping  matrix  contains  a  mass-proportional  and  a  stiffness-
proportional part. 

C=α M +β K

If the mass matrix is time-dependent, then the damping matrix also becomes:

C (t )=α (M g+M m(t))+β K

The first term (mass-proportional part) refers to extrenal damping (as a point support), while the
second term (stiffness-proportional part) refers to coupled internal damping (as a point-to-point
relationship).  For further information see Ref. [1] and Fig. 1.

The necessary α and β parameters depend on the analyzed structure. The recommended values
according to Ref. [1-2] are as follows:

ξ i=
1
2 ( α

ω i
+β ω i)

We can rearrange this equation:

α+β ω i
2
=2ω iξ i

Based on this equation the  α and β parameters can be calculated by specifying 2-2 angular
frequencies and damping ratios. In the expression ωi is the i-th angular frequency and ξi is the i-
th damping ratio related to the i-th mode shape.
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Figure 1 – Interpretation of Rayleigh damping
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For example:

ξ 1=0.03 ; ω 1=4 rad /s

ξ 2=0.12 ; ω 2=17 rad /s

Using the former equation to the 2-2 angular frequencies and damping ratios:

α+16 β =0.24

α+289β =4.08

Based on these two equations:

α=0.01498 ; β=0.01405

According to Ref. [1] the variations of modal damping ratios with natural frequencies are not
consistent with experimental  data that  indicate  roughly the same damping ratios for several
vibration modes of a structure. If both modes are assumed to have same damping ratio ξ, which
is reasonable based on experimental data, then the parameters can be calculated as follows:

α=ξ
2ω i ω j

ω i+ω j
and β=ξ

2
ω i+ω j

Or expressed with the natural eigenfrequencies:

α=ξ
4π f i f j

f i+ f j

and β=
ξ
π

1
f i+ f j

SUGGESTION: It is advisable to calculate first the eigenfrequencies considering only the mass
in  the  global  Z  direction  and  select  the  two  specific  eigenfrequencies  (and  the  associated
vibration shapes) based on this  calculation.  The most obvious method is  to  choose the two
eigenfrequencies  which  provide  the  highest  effective  masses.  In  FEM-Design  the  effective
masses  after  the eigenfrequency calculation can be found in the setup menu of the seismic
calculation.

If someone would like to consider only the so-called equivalent Kelvin-Voigt damping, in that
case the Rayleigh damping parameters:

α=0 and β=
ξ

π f i

1.5 Time step and preliminary conditions

By a discrete model, assuming an evenly spaced load, the time step can be calculated based on 
the specified velocity and the division number of the moving load on the specified path:

Δ t=
Δ s
v

The initial conditions are necessary to solve the differential equation system. In FEM-Design it
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is  considered in the following way. The initial displacement at t = 0 time is x(0) = x0 . The x0 is
the static displacement of the structure calculated under the moving load at the starting position
on the path. The initial velocity is ẋ (0)=v0=0 . The initial acceleration is ẍ (0)=a0=0 .

We can see from the algorithms (Newmark or Wilson-Θ) of the direct solution of the differential
equation in Ref. [1] that the controll parameter is the  Δt  time step. The correctly chosen Δt  is
essential to obtain sufficiently accurate results and to the stability of the numerical solution.

In FEM-design the input data to the moving mass dynamic response calculation is the division
number of the moving load position on the specified path. Therefore based on the specified
velocities this division number of the moving load on the path controls the time step size of the
numerical algorithm with the Δs distance between the moving load adjacent positions (see the
previous equation).

We recommend to calculate the  Δt  using the vibration time period (  T  ) from the maximum
effective mass mode shape with the following method.

Let Lp be the length of the path and estimate the time step using the next formula:

Δ t=
T
20

=
Δ s
v

 

Thus the path division number  ( n ) should be minimum, see Fig. 2:

n=
20 L p

v T

 

1.6 Finite element calculation model

Dynamic calculations are not sensitive to the “fine” or “standard” finite element type settings.
There are no internal force peaks here, thus we recommend to use “standard” element group to
speed up the calculation time. It may be worth to compare the values of the eigenfrequencies
from the same model based on the two types of finite element group.

1.7 The path of the moving load

More paths can be calculated individually but it  means that the results  from different paths
cannot be combined together.

Only the 'division number' can be considered. That is, the step length on each path must be
constant. Based on this the time step (Δt) can be calculated. The load is not reversed because it
makes no sense due to the constant velocity vector of the moving mass (see. Fig. 2).

It is advisable during the specification of the path to ensure that the load is just touching the
structure in the starting position and touching or leaving the final necessary position.
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1.8 Calculations and results

The analysis setup dialog can be seen in Fig. 3. You can set here the following options:

– Method of the integration scheme.  Newmark or Wilson-Θ.

– Decision about the moving load mass conversion during the calculation. 

– Minimum and maximum value of the analyzed velocity range. The number of velocity
division gives the considered discrete values of the velocities in the given range.

– The Rayleigh damping coefficients based on the mentioned recommendation in Chapter
1.4 can be given here.  

– If the user defined several moving loads in the model then here can be selected which
moving loads will be involved into the dynamic response calculation. 

9

Figure 2 – The setting of the applied moving load
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After the dynamic response calculation of the moving loads the following results will be 
available:

– Static displacements with graph or color palette view by the different load positions of the
moving load and the maximum value. Detailed graphical function results are also available
to a single node.

– Dynamic displacements with graph or color palette view by the different load positions of
the  moving load and the  maximum value.  Detailed  graphical  function results  are  also
available to a single node.

– Accelerations color palette view by the different load positions of the moving load and the
maximum value. Detailed graphical function results are also available to a single node.

– Dynamic factor color palette view by the different load positions of the moving load and
the maximum value. Detailed graphical function results are also available to a single node.

– Normalised  dynamic  factor  color  palette  view  by  the  different  load  positions  of  the
moving load and the maximum value. Detailed graphical function results are also available
to a single node.

NOTE: As you can see two kinds of dynamic factor are available by the results. 

The regular dynamic magnification factor (so-called dynamic factor)  at  a given  i-th node is
calculated as the ratio of the dynamic and static displacements caused by the moving load along
the path.

10

Figure 3 – The moving load setup
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x i ,dyn

x i , stat

The normalised dynamic factor will be calculated in the same way, but in the denominator we
consider  the  maximum  static  displacement  of  the  structure  instead  of  the  actual  static
displacement of  the specific node. 

x i , dyn

x j , stat , max

 

1.9 Restrictions of the calculation

Since this type of dynamic calculation is linear, all non-linearity effects will be neglected during
this calculation e.g.:

– Uplift

– Cracked section analysis

– Plastic calculation

– Construction stage calculation

– Diaphragm

– Non-linear soil

– 2nd order effect
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2 Verification examples 

2.1 Dynamic response of a moving mass point on a simply supported beam

Example is taken from Ref. [3]. Let's take a simply supported beam with one moving mass point
on it, see. Fig. 4.

Inputs (as you can see in this case the moving object will be a “force” but its mass will be
considered during the dynamic calculation):

Analyzed position Mid-span of the beam

The distributed mass of the beam m = 312 kg/m

Mass of the moving mass M = 1248 kg

Elastic modulus of the beam E= 206 GPa

Span length L = 20 m

Analyzed constant velocities of the moving mass v1 = 18.12 km/h

v2 = 36.24 km/h

v3 = 72.48 km/h

Critical damping ratio ξ = 0 % 

Path length Lp = 40 m

Cross-section 200 mm x 200 mm square

In  FEM-Design by this  example  during  the  direct  integration  calculation  the  damping  was
neglected (thus in the Rayleigh damping matrix the  α = 0 and β = 0), therefore the system is
undamped. In the FEM model we split the beam into 50 parts to consider a relevant continuous
mass distribution, and 201 mass point positions, see Fig. 4. The results belong to those positions
which are not on the structure will give us the free vibration response of the structure, see Fig. 7.

The first three eigenfrequencies of a simply supported beam with continuous distributed mass.

f 1=
π

2⋅L2 √ EI
m

= π
2⋅202 √ 206000000000⋅0.24

/12
312

=1.165Hz  

 f 2=
π

2⋅( L
2 )

2 √ EI
m

= π

2⋅(20
2 )

2 √ 206000000000⋅0.24
/12

312
=4.661Hz
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Figure 4 – The geometry and the moving mass positions on the path during the calculation
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f 3=
π

2⋅( L
3 )

2 √ EI
m

= π

2⋅(20
3 )

2 √ 206000000000⋅0.24
/12

312
=10.49 Hz  

According  to  FEM-Design  calculation  the  first  three  eigenfrequencies  of  the  beam  are  as
follows, see Fig. 5:

f FEM 1=1.165 Hz ; f FEM 2=4.658Hz f FEM 3=10.47Hz

The critical velocity:

vcr=2 L f 1=2⋅20⋅1.165=46.6
m
s

=167.76
km
h

The analytical solutions based on Ref. [3] are the normalised dynamic factors of the beam mid-
span  under  different  velocities.  These  values  are  very  close  to  the  FEM-Design  numerical
calculations.

The maximum static deflection of the mid-span if the mass is at the mid-span:

emax=
F L3

48 EI
=

M g L3

48 EI
=

1248⋅9.81⋅203

48⋅206000000000⋅0.24
/12

=0.07429 m  

13

Figure 5 – The first three eigenshapes in FEM-Design
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The maximum static deflection at mid-span based on FEM-Design calculation (see also Fig. 7):

emax
FEM

=0.07431 m  

The maximum normalized dynamic factor at the mid-span under  v1 velocity according to Ref.
[3]:

(Z1
dynamic

Zmax
static )

max

=1.1  

This value based on FEM-Design, see Fig. 6-7:

(Z1
FEMdynamic

Zmax
FEMstatic )

max

=1.096  

Fig. 7 shows the static and dynamic displacements at  the mid-span under the different load
positions with v1 velocity. 

In Fig. 7 we can see the static and dynamic maximum deflection at the mid-span.

edynamic max
FEM v1 =0.08139m  

14

Figure 6 – The normalized dynamic factor diagram based on FEM-Design with v1 velocity
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Figure 7 – The dynamic and static displacements of the mid-span in function of mass positions with v1 velocity
with FEM-Design
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The maximum normalized dynamic factor at the mid-span under v2 velocity:

(Z2
dynamic

Zmax
static )

max

=1.21

This value based on FEM-Design, see Fig. 8:

(Z2
FEMdynamic

Zmax
FEMstatic )

max

=1.21  

Fig. 9 shows the static and dynamic displacements at  the mid-span under the different load
positions with v2 velocity.

About Fig. 9 we can see the static and dynamic maximum deflection at the mid-span.

edynamic max
FEM v2 =0.08991 m

16

Figure 8 – The normalized dynamic factor diagram based on FEM-Design with v2 velocity
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Figure 9 – The dynamic and static displacements of the mid-span in function of mass positions with v2 velocity
with FEM-Design
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The maximum normalized dynamic factor at the mid-span under v3 velocity:

(Z3
dynamic

Zmax
static )

max

=1.85  

This value based on FEM-Design, see Fig. 10:

(Z3
FEMdynamic

Zmax
FEMstatic )

max

=1.76  

Fig. 11 shows the static and dynamic displacements at the mid-span under the different load
positions with v3 velocity.

18

Figure 10 – The normalized dynamic factor diagram based on FEM-Design with v3 velocity
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About Fig. 11 we can see the static and dynamic maximum deflection at the mid-span.

edynamic max
FEM v3 =0.1310m

We can say that there are good agreements between the results. On the FEM-Design dynamic
deflection results we can see the free vibration behaviour of the structure as well.

Download link to the example file:
http://download.strusoft.com/FEM-Design/inst190x/models/8.5 Dynamic response of a moving 
mass point on a simply supported beam.str

19

Figure 11 – The dynamic and static displacements of the mid-span in function of mass positions with v3 velocity
with FEM-Design

http://download.strusoft.com/FEM-Design/inst190x/models/8.5%20Dynamic%20response%20of%20a%20moving%20mass%20point%20on%20a%20simply%20supported%20beam.str
http://download.strusoft.com/FEM-Design/inst190x/models/8.5%20Dynamic%20response%20of%20a%20moving%20mass%20point%20on%20a%20simply%20supported%20beam.str
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2.2 Dynamic response of a moving single force on a simply supported beam

Inputs:

Analyzed position Mid-span of the beam

The distributed mass of the beam μ = 7950 kg/m

The concentrated moving force F = 480 kN

Bending stiffness EI = 4.26*107 kNm2

Span length L = 30 m

Analyzed constant velocities of the moving force v1 = 50 m/s = 180 km/h

v2 = 100 m/s = 360 km/h

Damping ξ = 0 %

Path length Lp = 90 m
In this calculation we neglect the mass effect of the moving force, because based on Ref. [4] we
can get the analytical solution of the problem directly.  Fig.  12 shows the problem with the
considered moving force, positions and geometry.

The first eigen and angular natural frequency based on closed form with Bernoulli beam theory:

f 1=
π

2⋅L2 √ EI
m

= π
2⋅302 √ 4.26⋅107

7.95
=4.040 Hz ; ω 01=2π f 1=25.38

rad
s

The  first  eigen  and  angular  natural  frequency  based  on  FEM-Design  calculation  with
Timoshenko beam theory:

f FEM 1=3.997 Hz ; ω FEM 01=2π f 1=25.11
rad
s

The analytical  solution of the deflection of  the beam in function of time and load position
according to Ref. [4] if the moving force is on the structure can be calculated with the following
formula:

e (x ,t )=∑
r=1

∞

v r(x )η r (t)

20

Figure 12 – The geometry and the moving load positions on the path during the calculation
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where:

vr (x )=√ 2
μ L

sin
r π x

L
; η r( t)=

F
ω 0r √ 2

μ L
1

( r π v
L )

2

−ω 0r
2
( r π v

L
sinω 0r t−ω 0r sin

r π v
L

t)

In addition to the above mentioned parameters, r is the number of the eigenfrequencies.

At the midspan only the odd number of eigenfrequencies have effect on the final solution. In
this case the dominant eigenfrequency is the first one, thus at the analytical solution we will use
only the first eigenfrequency by the summation. In the complete analytical solution all of the
eigenfrequencies  have  effect  on  the  final  solution,  but  in  this  case  the  rest  of  them have
neglectable influence.

If  0 < t < L/v the approximate deflection at the mid-span in function of time:

e (
L
2

, t)=
2

μ L
F

ω 01

1

(1π v
L )

2

−ω 01
2
(1π v

L
sinω 01 t−ω 01sin

1π v
L

t)

The derivative of this function (velocity):

ė (
L
2

, t)=
2

μ L
F

ω 01

1

(1π v
L )

2

−ω 01
2

ω 01 π v

L (cosω 01 t−cos
π v
L

t)  

In that time value when the force is leaving the structure the initial values of the remaining free
vibration part of the solution:

In case of v1:

t 1=
L
v1

=
30
50

=0.6 s  

Displacement:  

e init1=e (
L
2

,0.6)=
2

7950⋅30
480000
25.38

1

(1π 50
30 )

2

−25.382
(1π 50

30
sin 25.38⋅0.6−25.38sin

1π 50
30

⋅0.6)=

=−0.0006217m

Velocity: 

ė init1=ė (
L
2

,0.6)=
2

7950⋅30
480000
25.38

1

(1π 50
30 )

2

−25.382

25.38⋅π 50
30 (cos25.38⋅0.6−cos

π 50
30

0.6)
=−0.003861 m /s
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In case of v2:

t 2=
L
v2

=
30
100

=0.3 s

Displacement:

e init2=e (
L
2

, 0.3)=−0.0030183 m  

Velocity:

ė init2=ė (
L
2

,0.3)=−0.097608m /s

After the moving force has just reached the end of the beam the dynamic behaviour of the beam
will be a free vibration (if no damping is considered). With the mentioned initial values based on
that time value when the force will be at the end of the beam the function of the free vibration
can be given:

If  L/v < t the approximate deflection at the mid-span in function of time:

e (
L
2

, t)=e init cos[ω 01( t−
L
v
)]+ ė init

ω 01
sin[ω 01(t−

L
v
)]  

Fig. 13 shows the deflection function of the given analytical solution with the two different
velocities. 

Fig. 14-15 shows the dynamic and static deflection of the mid-span under the moving load based
on FEM-Design calculation with the two different velocities.

22

Figure 13 – The dynamic deflection of the mid-span with the two given velocities 
according to the analytical solution
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We can see in Fig. 13-15 that after the position when the load has just left the beam the dynamic
response is free vibration.

According to the given solutions we can say that the FEM-Design result are identical with the
analytical solution.

Download link to the example file:
http://download.strusoft.com/FEM-Design/inst190x/models/8.6 Dynamic response of a moving 
single force on a simply supported beam.str

23

Figure 14 – The dynamic and static displacements of the mid-span in function of force positions with v1 velocity
with FEM-Design

http://download.strusoft.com/FEM-Design/inst190x/models/8.6%20Dynamic%20response%20of%20a%20moving%20single%20force%20on%20a%20simply%20supported%20beam.str
http://download.strusoft.com/FEM-Design/inst190x/models/8.6%20Dynamic%20response%20of%20a%20moving%20single%20force%20on%20a%20simply%20supported%20beam.str
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Figure 15 – The dynamic and static displacements of the mid-span in function of force positions with v2 velocity
with FEM-Design
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2.3 Dynamic response of a moving force group on a simply supported beam

Inputs:

Analyzed position Mid-span of the beam

The distributed mass of the beam m = 7950 kg/m

Bending stiffness EI = 4.26*107 kNm2

Span length L = 30 m

Analyzed velocities of the moving force groups Case a): v1 = 50 m/s = 180 km/h

Case a): v2 = 100 m/s = 360 km/h

Case b): v1 = 100 m/s = 360 km/h

Case b): v2 = 120 m/s = 432 km/h

Critical damping ratio ξ = 1.5 % = 0.015

Path length Lp = 500 m

In this calculation we neglect the mass effect of the moving force, because based on Ref. [4] we
have benchmark results to compare our FEM-Design results. In this example the structure is the
same as in the previous example, only the moving load differs from it.

In this example we considered two different load groups as the moving loads. Fig. 16 top shows
case a) and bottom shows case b). In both cases we modeled 12 motor trains group as the
moving load. Case a) includes 12 individual concentrated loads (12 x 544 kN) to consider the
weights of the train cars. In case b) we considered that every train cars have 4 axes, thus the load
group contains 12 x 4 x 136 kN. The resultants of the load groups are the same.

Thus in these examples case a) and case b) load groups will be move on the path.

In this example we considered damping based on the equivalent Kelvin-Voigt damping.

Considering the given critical damping ratio and the first eigenfrequency of the given structure
(based on the previous example) the Rayleigh damping parameters are as follows: 

α=0; β=
ξ

π f 1

=
0.015

π 3.997
=0.001195

25

Figure 16 – The considered load groups to the dynamic analysis

F=544 kN

F=4x136 kN

11 x 25 m

11 x 25 m
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With  the  given  input  parameters  Fig.  17  shows  the  dynamic  response  of  the  mid-span  in
function of the load position based on Ref. [4] in case a) load groups with v1  = 50 m/s = 180
km/h and v2 = 100 m/s = 360 km/h.

Fig. 18-19 shows the dynamic response of mid-span in function of the load positions based on
the FEM-Design moving load dynamic calculation in case a) load group.

26

Figure 17 – The dynamic deflection of the mid-span based on Ref. [4] in case a) with the two velocities

Figure 18 – The dynamic and static displacements of the mid-span in function of force positions with v1 velocity
in FEM-Design in case a)
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We can say that the results are very close to each other.

Fig. 20 shows the dynamic response of the mid-span in function of the load position based on
Ref. [4] in case b) load groups with v1 = 100 m/s = 360 km/h and v2 = 120 m/s = 432 km/h.
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Figure 19 – The dynamic and static displacements of the mid-span in function of force positions with v2 velocity
in FEM-Design in case a)

Figure 20 – The dynamic deflection of the mid-span based on Ref. [4] in case b) with the two velocities
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Fig. 21-22 shows the dynamic response of mid-span in function of the load positions based on
the FEM-Design moving load dynamic calculation in case b) load groups.

We can say that the results are very close to each other.
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Figure 21 – The dynamic and static displacements of the mid-span in function of force positions with v1 velocity
in FEM-Design in case b)
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Download link to the example file:
Case a):
http://download.strusoft.com/FEM-Design/inst190x/models/8.7 Dynamic response of a moving 
force group on a simply supported beam case a.str

Case b):
http://download.strusoft.com/FEM-Design/inst190x/models/8.7 Dynamic response of a moving 
force group on a simply supported beam case b.str
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Figure 22 – The dynamic and static displacements of the mid-span in function of force positions with v2 velocity
in FEM-Design in case b)

http://download.strusoft.com/FEM-Design/inst190x/models/8.7%20Dynamic%20response%20of%20a%20moving%20force%20group%20on%20a%20simply%20supported%20beam%20case%20b.str
http://download.strusoft.com/FEM-Design/inst190x/models/8.7%20Dynamic%20response%20of%20a%20moving%20force%20group%20on%20a%20simply%20supported%20beam%20case%20b.str
http://download.strusoft.com/FEM-Design/inst190x/models/8.7%20Dynamic%20response%20of%20a%20moving%20force%20group%20on%20a%20simply%20supported%20beam%20case%20a.str
http://download.strusoft.com/FEM-Design/inst190x/models/8.7%20Dynamic%20response%20of%20a%20moving%20force%20group%20on%20a%20simply%20supported%20beam%20case%20a.str


Dynamic Response of Moving Load FEM-Design 19 

References
[1] Chopra A.K., Dynamics of Structures, Prentice Hall, Fourth edition, 2011.

[2] Bathe K.J., Finite element procedures, Second Edition, Prentice Hall, 2016.

[3] Chatterjee A., Vaidya T.S., Dynamic Analysis of Beam under the Moving Mass for Damage
Assessment,  International  Journal  of Engineering Research & Technology,  Vol.  4,  788-796.,
2015.

[4] Györgyi J., Structural Dynamics (in Hungarian), Műegyetemi kiadó, 2006.

30



Dynamic Response of Moving Load FEM-Design 19 

Notes

31


	List of symbols
	1 Dynamic effect calculation of moving load
	1.1 The purpose of this type of moving load dynamic calculation
	1.2 The solution method of the dynamic differential equation system
	1.3 The mass matrix
	1.4 The Rayleigh damping matrix
	1.5 Time step and preliminary conditions
	1.6 Finite element calculation model
	1.7 The path of the moving load
	1.8 Calculations and results
	1.9 Restrictions of the calculation

	2 Verification examples
	2.1 Dynamic response of a moving mass point on a simply supported beam
	2.2 Dynamic response of a moving single force on a simply supported beam
	2.3 Dynamic response of a moving force group on a simply supported beam

	References
	Notes

