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List of symbols
C damping matrix
fi i-th eigenfrequency
K stiffness matrix
L, path length
M(1t) diagonal (lumped) mass matrix (in function of time)
M, constant mass matrix based on the converted constant loads
M,(¢) mass matrix of the moving load in function of time
n division number of the path
q() excitation force vector in function of time (moving load)
t time
T time period
v velocity of the moving loads
x(7) displacement vector in function of time
x(1) velocity vector in function of time
(1) acceleration vector in function of time
Xidyn vertical dynamic translational displacement of the i-th node
Xistat vertical static translational displacement of the i-th node
X stat maximum vertical static translational displacement on the path
a Rayleigh damping matrix coefficient
S Rayleigh damping matrix coefficient
As path step
At time step
& critical damping ratio of the i-th eigenfrequency
; i-th angular natural frequency
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1 Dynamic effect calculation of moving load

1.1 The purpose of this type of moving load dynamic calculation

Calculation of the dynamic effect of loads (masses) which are moving on bridges, overpasses or
anywhere. On a pre-defined path the load (mass) or load groups (masses) are moving along the
structure with constant specific velocity. This kind of excitation will result a dynamic response
of the structure. The result by this calculation method is primarily the calculation of the dynamic
factor, but also the dynamic displacements and accelerations on the structure. See EN 1991-2
about actions on structures as well.

1.2 The solution method of the dynamic differential equation system

The second order linear inhomogeneous differential equation system is the following, see Ref.
[1]:
Mx(t)+Cx(t)+ K x(t)=q(t) ,

where M is the diagonal mass matrix of the permanent loads, mass points and optionally the

mass of the moving load. C is the so-called Rayleigh damping matrix. K is the linear global

structural stiffness matrix. ¢(7) is the load vector calculated at 7 time based on the specified

moving loads. x(¢) is the displacement vector at time . x(¢) is the velocity vector at time ¢ .
X(t) is the acceleration vector at time ¢ .

The solution of the differential equation of motion is achieved by the direct integration method.
The used integration rule is the so-called Newmark or Wilson-® method depending on the
settings and according to Ref. [2].

1.3 The mass matrix

Usually the mass matrix only contains the mass of the structure. It is also possible to consider
the mass of the moving load. It is an adjustable settings by the setup of the moving load
calculation in FEM-Design. In this case the mass matrix is as follows:

M(t)=M +M (1) ,

where M, is the mass matrix calculated from the weight of the structure (mainly from permanent
loads) which is constant during the calculation (time independent). M,(f) is a mass matrix
calculated in each position of the moving load.

NOTE: Mass of the moving load should be considered only if the value of the moving weight is
equal to or greater than 10% of the weight of the structure. The time-dependent mass matrix
significantly increases the computational time.
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1.4 The Rayleigh damping matrix

The so-called Rayleigh damping matrix contains a mass-proportional and a stiffness-
proportional part.

C=aM+pK
If the mass matrix is time-dependent, then the damping matrix also becomes:
Clt)=a(M,+M,(1))+BK

The first term (mass-proportional part) refers to extrenal damping (as a point support), while the
second term (stiffness-proportional part) refers to coupled internal damping (as a point-to-point
relationship). For further information see Ref. [1] and Fig. 1.
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Figure 1 — Interpretation of Rayleigh damping

The necessary o and S parameters depend on the analyzed structure. The recommended values
according to Ref. [1-2] are as follows:

1
S=lGrpel
We can rearrange this equation:

a+ﬁa)i2:2wi§i

Based on this equation the a and f parameters can be calculated by specifying 2-2 angular
frequencies and damping ratios. In the expression w;is the i-th angular frequency and & is the i-
th damping ratio related to the i-th mode shape.
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For example:
§,=0.03 ; w,=4rad/s
§,=0.12 ; w,=17rad/s
Using the former equation to the 2-2 angular frequencies and damping ratios:
a+165=0.24
a+289 =4.08

Based on these two equations:
a=0.01498 ; £=0.01405

According to Ref. [1] the variations of modal damping ratios with natural frequencies are not
consistent with experimental data that indicate roughly the same damping ratios for several
vibration modes of a structure. If both modes are assumed to have same damping ratio &, which
is reasonable based on experimental data, then the parameters can be calculated as follows:

20,0, 2
a=§ a),-+wjj and =& w,Fw,

Or expressed with the natural eigenfrequencies:

47Tfifj _& 1
raf, M Py

SUGGESTION: It is advisable to calculate first the eigenfrequencies considering only the mass
in the global Z direction and select the two specific eigenfrequencies (and the associated
vibration shapes) based on this calculation. The most obvious method is to choose the two
eigenfrequencies which provide the highest effective masses. In FEM-Design the effective
masses after the eigenfrequency calculation can be found in the setup menu of the seismic
calculation.

a=§

If someone would like to consider only the so-called equivalent Kelvin-Voigt damping, in that
case the Rayleigh damping parameters:

a=0 and f= Hif,
1.5 Time step and preliminary conditions

By a discrete model, assuming an evenly spaced load, the time step can be calculated based on
the specified velocity and the division number of the moving load on the specified path:

Azzﬁ
\%

The initial conditions are necessary to solve the differential equation system. In FEM-Design it
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is considered in the following way. The initial displacement at ¢t = 0 time is x(0) = x,. The xo1is
the static displacement of the structure calculated under the moving load at the starting position
on the path. The initial velocity is %(0)=v,=0 . The initial accelerationis ¥(0)=a,=0 .

We can see from the algorithms (Newmark or Wilson-0®) of the direct solution of the differential
equation in Ref. [1] that the controll parameter is the A¢ time step. The correctly chosen Af is
essential to obtain sufficiently accurate results and to the stability of the numerical solution.

In FEM-design the input data to the moving mass dynamic response calculation is the division
number of the moving load position on the specified path. Therefore based on the specified
velocities this division number of the moving load on the path controls the time step size of the
numerical algorithm with the As distance between the moving load adjacent positions (see the
previous equation).

We recommend to calculate the A¢ using the vibration time period ( 7 ) from the maximum
effective mass mode shape with the following method.

Let L, be the length of the path and estimate the time step using the next formula:
20 v
Thus the path division number ( 7 ) should be minimum, see Fig. 2:
_ 20L,
vT

n

1.6 Finite element calculation model

Dynamic calculations are not sensitive to the “fine” or “standard” finite element type settings.
There are no internal force peaks here, thus we recommend to use “standard” element group to
speed up the calculation time. It may be worth to compare the values of the eigenfrequencies
from the same model based on the two types of finite element group.

1.7 The path of the moving load

More paths can be calculated individually but it means that the results from different paths
cannot be combined together.

Only the 'division number' can be considered. That is, the step length on each path must be
constant. Based on this the time step (Af) can be calculated. The load is not reversed because it
makes no sense due to the constant velocity vector of the moving mass (see. Fig. 2).

It is advisable during the specification of the path to ensure that the load is just touching the
structure in the starting position and touching or leaving the final necessary position.
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1.8 Calculations and results

The analysis setup dialog can be seen in Fig. 3. You can set here the following options:

Figure 2 — The setting of the applied moving load

Method of the integration scheme. Newmark or Wilson-®.
Decision about the moving load mass conversion during the calculation.

Minimum and maximum value of the analyzed velocity range. The number of velocity
division gives the considered discrete values of the velocities in the given range.

The Rayleigh damping coefficients based on the mentioned recommendation in Chapter
1.4 can be given here.

If the user defined several moving loads in the model then here can be selected which
moving loads will be involved into the dynamic response calculation.

Moving load

General  yehide

[, 5 | o e |
Used Load group ....... Self-created
Default division
(®) By division number ................
O By distance [M] oo, 3.00

Loading options

(Jretern ——>——)
Lock direction of vertical loads _\"*J;

Cut loads to path extent 'l' '1'
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Moving load dynamic effect calculation setup >
Integration scheme Mo, Moving load Ragd. | »™
(®) Mewmark 1p1 Yes
2.p2 Yes
() wilson-Theta
Method

Generate mass from the Maving load

Velodity range
Minimum velodity [km/h] ....... 18.1
Maximum velocity km/h] ...... 72.5

MNo. of velocity division ........

Rayleigh damping matrix

C = Alpha *M +Beta *K
where
Mis the diagonal mass matrix,
Kis the stiffness matrix.

Cancel
Figure 3 — The moving load setup

After the dynamic response calculation of the moving loads the following results will be
available:

— Static displacements with graph or color palette view by the different load positions of the
moving load and the maximum value. Detailed graphical function results are also available
to a single node.

— Dynamic displacements with graph or color palette view by the different load positions of
the moving load and the maximum value. Detailed graphical function results are also
available to a single node.

— Accelerations color palette view by the different load positions of the moving load and the
maximum value. Detailed graphical function results are also available to a single node.

— Dynamic factor color palette view by the different load positions of the moving load and
the maximum value. Detailed graphical function results are also available to a single node.

— Normalised dynamic factor color palette view by the different load positions of the
moving load and the maximum value. Detailed graphical function results are also available
to a single node.

NOTE: As you can see two kinds of dynamic factor are available by the results.

The regular dynamic magnification factor (so-called dynamic factor) at a given i-th node is
calculated as the ratio of the dynamic and static displacements caused by the moving load along
the path.
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xi,dyn
xi,stat

The normalised dynamic factor will be calculated in the same way, but in the denominator we
consider the maximum static displacement of the structure instead of the actual static
displacement of the specific node.

xi,dyn

X

J.stat, max

1.9 Restrictions of the calculation

Since this type of dynamic calculation is linear, all non-linearity effects will be neglected during
this calculation e.g.:

- Uplift

— Cracked section analysis

— Plastic calculation

— Construction stage calculation
— Diaphragm

— Non-linear soil

— 2" order effect
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2 Verification examples

2.1 Dynamic response of a moving mass point on a simply supported beam

Example is taken from Ref. [3]. Let's take a simply supported beam with one moving mass point
on it, see. Fig. 4.

Position 1. 2. 3. n 101. 201.

a a

Figure 4 — The geometry and the moving mass positions on the path during the calculation

Inputs (as you can see in this case the moving object will be a “force” but its mass will be
considered during the dynamic calculation):

Analyzed position Mid-span of the beam

The distributed mass of the beam m =312 kg/m

Mass of the moving mass M = 1248 kg

Elastic modulus of the beam E=206 GPa

Span length L=20m

Analyzed constant velocities of the moving mass vi=18.12 km/h
v,=36.24 km/h
v3=72.48 km/h

Critical damping ratio ¢=0%

Path length L,=40m

Cross-section 200 mm x 200 mm square

In FEM-Design by this example during the direct integration calculation the damping was
neglected (thus in the Rayleigh damping matrix the a = 0 and = 0), therefore the system is
undamped. In the FEM model we split the beam into 50 parts to consider a relevant continuous
mass distribution, and 201 mass point positions, see Fig. 4. The results belong to those positions
which are not on the structure will give us the free vibration response of the structure, see Fig. 7.

The first three eigenfrequencies of a simply supported beam with continuous distributed mass.

EI 206000000000-0.2%/12
f1=212\/7=2_’2’02\/ 0 =1.165Hz
jr— 4
P 2\/g: x 2\/206000000000-0.2 12, i
H LY 520 Iz
2 2
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_ \/E__I_ x \/206000000000-0.24/12
Nom ? 312
I3

=10.49 Hz

According to FEM-Design calculation the first three eigenfrequencies of the beam are as
follows, see Fig. 5:

S e =1.165Hz 5 f 1y ,=4.658Hz ), ;=10.47Hz

Eurocode code: Eigenfrequencies - Vibration shape - Translational displacements - 1.shape 1.165 Hz - [1

Eurocode code: Eigenfrequencies - Vibration shape - Translational displacements - 5.shape 10.474 Hz - []

Figure 5 — The first three eigenshapes in FEM-Design

The critical velocity:
km

v, =2Lf,=2:20-1.165=46.6 %=167.76T

The analytical solutions based on Ref. [3] are the normalised dynamic factors of the beam mid-
span under different velocities. These values are very close to the FEM-Design numerical
calculations.

The maximum static deflection of the mid-span if the mass is at the mid-span:

o _FL' Mgl _ 1248-9.81-20°
" 48El  48El  48-206000000000-0.2%/12

=0.07429m
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The maximum static deflection at mid-span based on FEM-Design calculation (see also Fig. 7):

M =0.07431 m

The maximum normalized dynamic factor at the mid-span under v, velocity according to Ref.
[3]:
Zdynamic
! — =1.1
ZS atic

max max

This value based on FEM-Design, see Fig. 6-7:

FEMdynamic
Z yn

| =1.09%

FEMstatic
Zmax max

Moving load dynamic analysis: Normalized dynamic factor (18.12 km/h)

1.1

N
1
A

\\

) n
) // |
1 DAYV

21 41 61 81 101 161
Position [-]

Normalized dynamic factor [-]

-

Dynamical result

Figure 6 — The normalized dynamic factor diagram based on FEM-Design with v, velocity

Fig. 7 shows the static and dynamic displacements at the mid-span under the different load
positions with v; velocity.

In Fig. 7 we can see the static and dynamic maximum deflection at the mid-span.

My —() 08139 m

dynamic max

14
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Moving load dynamic analysis: Displacement (18.12 km/h)

20

™ A N,

1: ANAWAWANA
AV ERVEYERVA

Displacement [mm]

J N

21 41 61 81 101 121 141 161 181 201
Position [-]

Dynamical result Statical result

Figure 7 — The dynamic and static displacements of the mid-span in function of mass positions with v, velocity
with FEM-Design
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The maximum normalized dynamic factor at the mid-span under v, velocity:

Zdynamic
2 =121

7 static
max max

This value based on FEM-Design, see Fig. 8:

FEMdynamic
Z yn

= | =121

Z FEMstatic

max max

Moving load dynamic analysis: Normalized dynamic factor

1.3

. /N
g

N
- \
N

N

iy |

Normalized dynamic factor [-]

(36.24 km/h)

NAN

RYRY

P
/oy

21 41 61 81 101
Pasition [-]

Dynamical result

121

141 161 181 201

Figure 8 — The normalized dynamic factor diagram based on FEM-Design with v,velocity

Fig. 9 shows the static and dynamic displacements at the mid-span under the different load

positions with v, velocity.

About Fig. 9 we can see the static and dynamic maximum deflection at the mid-span.

FEM v,
edynamic max

=0.08991 m
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Moving load dynamic analysis: Displaceme
40
30

20

olb—

-20

-30

Displacement [mm)]

-40

-50

nt (36.24 km/h)

FEM-Design 19

-80

4N
\

o

21

41

61

81

101

121

Dynamical result Statical result

Position [-]

141

161

181

201

Figure 9 — The dynamic and static displacements of the mid-span in function of mass positions with v, velocity

with FEM-Design
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The maximum normalized dynamic factor at the mid-span under v; velocity:

Zdynamic
: =1.85

7 static
max max

This value based on FEM-Design, see Fig. 10:

FEMdynamic
Z yn

3

=1.76

Z FEMstatic
max max

Moving load dynamic analysis: Normalized dynamic factor

(72.48 km/h)

1.8

/N

/o

[

/ ANIA
/ \

o \ // .
Jo -

Normalized dynamic factor [-]

Dynamical result

Figure 10— The normalized dynamic factor diagram based on FEM-Design with vsvelocity

Fig. 11 shows the static and dynamic displacements at the mid-span under the different load
positions with v; velocity.
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Moving load dynamic analysis: Displacement (72.48 km/h)

100
75 /
50 \ /
25 \

—_ of—
5
- \\ \ /
a -50 \\_/ \ /
” \ \/
-100 \ /
-125 4
21 P &1 81 101 121 141 161 181 201
Position [-]
Dynamical result Statical result
Figure 11 — The dynamic and static displacements of the mid-span in function of mass positions with v;velocity
with FEM-Design

About Fig. 11 we can see the static and dynamic maximum deflection at the mid-span.

MY —(1310m

dynamic max

We can say that there are good agreements between the results. On the FEM-Design dynamic
deflection results we can see the free vibration behaviour of the structure as well.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst190x/models/8.5 Dynamic response of a moving
mass point on a simply supported beam.str
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2.2 Dynamic response of a moving single force on a simply supported beam

Position 1. 2. 3. n. 134. 401.
L
AV /(V

Figure 12 — The geometry and the moving load positions on the path during the calculation

Inputs:
Analyzed position Mid-span of the beam
The distributed mass of the beam pu=7950 kg/m
The concentrated moving force F =480 kN
Bending stiffness EI=4.26*10"kNm’
Span length L=30m
Analyzed constant velocities of the moving force vi=50 m/s = 180 km/h

v>= 100 m/s = 360 km/h

Damping ¢=0%
Path length L,=90m

In this calculation we neglect the mass effect of the moving force, because based on Ref. [4] we
can get the analytical solution of the problem directly. Fig. 12 shows the problem with the
considered moving force, positions and geometry.

The first eigen and angular natural frequency based on closed form with Bernoulli beam theory:

=7 E__]_ 1 W_ _ B ~ rad
fl_z_L2\/m_2.302\/ 703 =4.040Hz ; w,=2x f,=25.38 S

The first eigen and angular natural frequency based on FEM-Design calculation with
Timoshenko beam theory:

S e =3997THz G)FEMOIZZJTfI:ZS.ll&Sd

The analytical solution of the deflection of the beam in function of time and load position
according to Ref. [4] if the moving force is on the structure can be calculated with the following
formula:

e<x,z>=§v,<x>n,<r>
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where:

v (x):\/_Z Sin—rﬂx :n (t)=—F\/ 2 1 rﬂvsina) t—w sinmt
S P ML(rJTV)2_wz Lo e
L Or

In addition to the above mentioned parameters, 7 is the number of the eigenfrequencies.

At the midspan only the odd number of eigenfrequencies have effect on the final solution. In
this case the dominant eigenfrequency is the first one, thus at the analytical solution we will use
only the first eigenfrequency by the summation. In the complete analytical solution all of the
eigenfrequencies have effect on the final solution, but in this case the rest of them have
neglectable influence.

If 0 <¢< L/vthe approximate deflection at the mid-span in function of time:
e(£ t)= 2 F I 1]Tvsina) t—w sinlﬁ—vt

27 L P (1m)2 \ L L

L

01

The derivative of this function (velocity):

(L )_ 2 F 1 a)()lf[v(

Lo 1,7,
L —Wy

Ty
COS®,, t—cosTt)

In that time value when the force is leaving the structure the initial values of the remaining free
vibration part of the solution:

In case of vi:
L 30
t,=—==-=0.6
"y, 50 >
Displacement:
L 2 480000 1 1750 . . 1150
a=el—=,0.6)= 25.38:0.6—25.38 0.6 |=
ewa=e(7-00)= 755020 538 1250V 2( o o )
—25.38
30
=—0.0006217m
Velocity:
. (L 2 480000 1 25.38-7 50 50
a=el—=,0.6)= 25.38:0.6—cos——0.6
G =e(7-0-0)= 7550205 538 1250 i (COS “730 )
—25.38
30
=—0.003861 m/s




Dynamic Response of Moving Load FEM-Design 19

In case of vy:

L_ 30
=—=—2=03
=5 "100 0

Displacement:

emit2=e(§,0.3)=—0.0030183m
Velocity:

e =é (%, 0.3)=—0.097608 m /s
After the moving force has just reached the end of the beam the dynamic behaviour of the beam
will be a free vibration (if no damping is considered). With the mentioned initial values based on

that time value when the force will be at the end of the beam the function of the free vibration
can be given:

If L/v <t the approximate deflection at the mid-span in function of time:

Cinit . L
+w015m[a)01(t v)]

L L
oL t)=esyeos| o l1-)

Fig. 13 shows the deflection function of the given analytical solution with the two different
velocities.

Fig. 14-15 shows the dynamic and static deflection of the mid-span under the moving load based
on FEM-Design calculation with the two different velocities.

0,012

0,010
—— 180 km/h

0,008 — 360 km/h

0,006
0,004
0,002

0,000

Deflection at mid-span [m]

-0,002

-0,004

-0,006

Position of the force on the path [m]

Figure 13 — The dynamic deflection of the mid-span with the two given velocities
according to the analytical solution

22
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We can see in Fig. 13-15 that after the position when the load has just left the beam the dynamic
response is free vibration.

According to the given solutions we can say that the FEM-Design result are identical with the
analytical solution.

Download link to the example file:
http://download.strusoft.com/FEM-Design/inst190x/models/8.6 Dynamic response of a moving
single force on a simply supported beam.str

Moving load dynamic analysis: Displacement dyn (180.00 km/h)

1.0

0.5

Displacement [mm]

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

-3.0

-3.5

W\

\
\

P

e /
-4.5 /
. ~ ]

< N X

-7.0

A A A AN A

//\d \// \\/ b/ \\J/
//

Dynamical result

201
Position [-]

251 301 351 401

Statical result

Figure 14 — The dynamic and static displacements of the mid-span in function of force positions with v, velocity

with FEM-Design
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Moving load dynamic analysis: Displacement dyn (360.00 km/h)

8

. /N / N\
A /ﬁ\

\

! \

N S

4 / \/ \/
\

-8
e \\/

51 101 151 201 251 301 351 401
Position [-]

n

Displacement [mm]
o

&

Dynamical result Staticalresult

Figure 15 — The dynamic and static displacements of the mid-span in function of force positions with v,velocity
with FEM-Design
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2.3 Dynamic response of a moving force group on a simply supported beam

Inputs:

Analyzed position Mid-span of the beam

The distributed mass of the beam m = 7950 kg/m

Bending stiffness EI=4.26*10"kNm?

Span length L=30m

Analyzed velocities of the moving force groups Case a): vi=50 m/s = 180 km/h
Case a): v,= 100 m/s = 360 km/h
Case b): vi= 100 m/s = 360 km/h
Case b): vo= 120 m/s =432 km/h

Critical damping ratio ¢=1.5%=0.015

Path length L,=500 m

In this calculation we neglect the mass effect of the moving force, because based on Ref. [4] we
have benchmark results to compare our FEM-Design results. In this example the structure is the
same as in the previous example, only the moving load differs from it.

In this example we considered two different load groups as the moving loads. Fig. 16 top shows
case a) and bottom shows case b). In both cases we modeled 12 motor trains group as the
moving load. Case a) includes 12 individual concentrated loads (12 x 544 kN) to consider the
weights of the train cars. In case b) we considered that every train cars have 4 axes, thus the load
group contains 12 x 4 x 136 kN. The resultants of the load groups are the same.

RERRERARARER
000 0 0

A —F—F—F—
Figure 16 — The considered load groups to the dynamic analysis

Thus in these examples case a) and case b) load groups will be move on the path.
In this example we considered damping based on the equivalent Kelvin-Voigt damping.

Considering the given critical damping ratio and the first eigenfrequency of the given structure
(based on the previous example) the Rayleigh damping parameters are as follows:

E 0015

=0; = =
“ P= 7 = 73997

=0.001195
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With the given input parameters Fig. 17 shows the dynamic response of the mid-span in

function of the load position based on Ref. [4] in case a) load groups with v; = 50 m/s = 180
km/h and v,= 100 m/s = 360 km/h.
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v = A0 mfs v= 100 mfs

Figure 17 — The dynamic deflection of the mid-span based on Ref. [4] in case a) with the two velocities

Fig. 18-19 shows the dynamic response of mid-span in function of the load positions based on
the FEM-Design moving load dynamic calculation in case a) load group.

Moving load dynamic analysis: Displacement dyn333 (180.00 km/h)

]

Displacement [mm]
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Dynamical result Statical result
Figure 18 — The dynamic and static displacements of the mid-span in function of force positions with v, velocity

in FEM-Design in case a)
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Moving load dynamic analysis: Displacement dyn333 (360.00 km/h)
45
40 i
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_+
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Position [-]
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Figure 19 — The dynamic and static displacements of the mid-span in function of force positions with v, velocity
in FEM-Design in case a)

We can say that the results are very close to each other.

Fig. 20 shows the dynamic response of the mid-span in function of the load position based on
Ref. [4] in case b) load groups with v;= 100 m/s = 360 km/h and v,= 120 m/s = 432 km/h.
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Figure 20 — The dynamic deflection of the mid-span based on Ref. [4] in case b) with the two velocities
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Fig. 21-22 shows the dynamic response of mid-span in function of the load positions based on
the FEM-Design moving load dynamic calculation in case b) load groups.

We can say that the results are very close to each other.

Moving load dynamic analysis: Displacement dyn31(360.00 km/h)
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Figure 21 — The dynamic and static displacements of the mid-span in function of force positions with v, velocity
in FEM-Design in case b)
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Moving load dynamic analysis: Displacement dyn31 (432.00 km/h)
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Figure 22 — The dynamic and static displacements of t_he-W-a-’—span in function of force positions with v, velocity
in FEM-Design in case b)

Download link to the example file:
Case a):

http://download.strusoft.com/FEM-Design/inst190x/models/8.7 Dynamic response of a moving
force group on a simply supported beam case a.str

Case b):

http://download.strusoft.com/FEM-Design/inst190x/models/8.7 Dynamic response of a moving
force group on a simply supported beam case b.str



http://download.strusoft.com/FEM-Design/inst190x/models/8.7%20Dynamic%20response%20of%20a%20moving%20force%20group%20on%20a%20simply%20supported%20beam%20case%20b.str
http://download.strusoft.com/FEM-Design/inst190x/models/8.7%20Dynamic%20response%20of%20a%20moving%20force%20group%20on%20a%20simply%20supported%20beam%20case%20b.str
http://download.strusoft.com/FEM-Design/inst190x/models/8.7%20Dynamic%20response%20of%20a%20moving%20force%20group%20on%20a%20simply%20supported%20beam%20case%20a.str
http://download.strusoft.com/FEM-Design/inst190x/models/8.7%20Dynamic%20response%20of%20a%20moving%20force%20group%20on%20a%20simply%20supported%20beam%20case%20a.str
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