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In this verification handbook we highlighted the analytical results with green and the finite
element results with blue background for better comparison. The analytical closed formulas
are highlighted with a black frame. The comparisons between the hand calculations and
FEM-Design calculations are highlighted with yellow.

If the finite element mesh is not mentioned during the example it means that the
automatically generated mesh was used.

WARNING:

We are continuously developing this verification book therefore some discrepancy in the
numbering of the chapters or some missing examples can occur.
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1 Linear static calculations

1.1 Beam with two point loading at one-third of its span

Fig. 1.1.1 left side shows the simple supported problem. The loads, the geometry and material
properties are as follows:

Force F=150 kN

Length L=6m

Cross section Steel I beam HEA 300
The second moment of inertia in the relevant direction [,=1.8264'10*m*
The shear correction factor in the relevant direction p.=0.21597

The area of the cross section A=112.53 cm?
Young's modulus E =210 GPa

Shear modulus G =80.769 GPa

¢F ¢F ¢ESF=1
s e

L3 L3 L/3 L2 L2

Y v v v 4 Y Y
d 7

" MMM s MM g,

Figure 1.1.1 — The beam theory and the application of a virtual force

The deflection of the mid-span based on the hand calculation (based on virtual force theorem
[1], see Fig. 1.1.1 right side also):

2M|L22L1 ,L2L L1L1| 2F L| 23 FL FL
e=—r|=S="= +o =S |05 |= +
El |33342 634 6342]| pGA 3| 648 EI 3pGA
23 150-6° 150-6

= + =0.03151 m=31.51
648 210000000-1.8264-10*  3:0.21597-80769000-0.011253 o o
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The first part of this equation comes from the bending deformation and the second part comes
from the consideration of the shear deformation as well, because FEM-Design is using
Timoshenko beam theory (see the Scientific Manual).

The deflection and the bending moment at the mid-span based on the linear static calculation
with three 2-noded beam elements (Fig. 1.1.2 and Fig. 1.1.3):

ey =31.51mm and the bending moment M, =300 kNm

The theoretical solution in this case (three 2-noded beam elements) must be equal to the finite
element solution because with three beam elements the shape functions order coincides with the
order of the theoretical function of the deflection (the solution of the differential equations).

150 kN
150 kN

Figure 1.1.2 — The finite element model

L 0.00
| T — om;s T

Figure 1.1.3 — The mid-span deflection [mm]|

Therefore the difference between the results of the two calculations is zero.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst170x/models/1.1 Beam with two point loading at

one-third of its span.str



http://download.strusoft.com/FEM-Design/inst170x/models/1.1%20Beam%20with%20two%20point%20loading%20at%20one-third%20of%20its%20span.str
http://download.strusoft.com/FEM-Design/inst170x/models/1.1%20Beam%20with%20two%20point%20loading%20at%20one-third%20of%20its%20span.str
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1.2 Calculation of a circular plate with concentrated force at its center

In this chapter a circular steel plate with a concentrated force at its center will be analyzed. First
of all the maximum deflection (translation) of the plate will be calculated at its center and then
the bending moments in the plate will be presented.

Two different boundary conditions will be applied at the edge of the plate. In the first case the
edge is clamped (Case I.) and in the second case is simply supported (Case II.), see Fig. 1.2.1.

Figure 1.2.1 — Clamped (Case 1.) and simply supported (Case I1.) circular plate with concentrated force

The input parameters are as follows:

The concentrated force P=10kN
The thickness of the plate h=0.05m
The radius of the circular plate R=5m

The elastic modulus E =210 GPa
The Poisson's ratio v=0.3

The ratio between the diameter and the thickness is 2R/h = 200. It means that based on the
geometry the shear deformation only have negligible effects on the maximum deflections. It is
important because FEM-Design uses the Mindlin plate theory (considering the shear
deformation, see Scientific Manual for more details), but in this case the solution of Kirchhoff's
plate theory and the finite element result must be close to each other based on the mentioned
ratio.

The analytical solution of Kirchhoff's plate theory is given in a closed form [2][3].
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Case L.
For the clamped case the maximum deflection at the center is:
PR
ER’
12(1-v?)

W=

161

The reaction force at the edge:

P

O=3R

And the bending moment in the tangential direction at the edge:

_r
47

With the given input parameters the results based on the analytical and the finite element results
(with the default finite element mesh size, see Fig. 1.2.2) are:

2
W= 10-5 —1=0.002069 m =2.069 mm Wy =2.04 mm
210000000-0.05
161 >
12(1-0.3%)
10 _ kN 3 kN
0,=5 ==0318— Qe =0.318—
P 10 kNm kNm
=" Y . —_— M = —
a= g 09— airen = 0.796 =

Figure 1.2.2 — The clamped (Case 1.) and the simply supported (Case Il.) plate with the default mesh
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Case II.:

For the simply supported case the maximum deflection in the center is:

PR’ 3+v
WS‘S
’ EW 1+v
67| ———
12(1—v?)

The reaction force at the edge:

P

O =37

With the given input parameters the results based on the analytical and the finite element results
(with the default finite element mesh size, see Fig. 1.2.2) are:

2
W= 10-5 (2592 )_0,005252 m=5.252 mm W =5.00mm
16 7| 210000000-0.05 1+0.3
T 2
12(1-0.3%)

5.0
Figure 1.2.3 — The deflected shape of Case 1. (clamped) and Case II. (simply supported) with the default mesh [mm]

Fig. 1.2.3 shows the two deflected shape in side view. The different boundary conditions are
obvious based on the two different displacement shape. The differences between the analytical
solutions and finite element solutions are less than 5% but the results could be more accurate if
the applied mesh is more dense than the default size.

Based on the analytical solution the bending moments in plates under the concentrated loads are
infinite. It means that if more and more dense mesh will be applied the bending moment under
the concentrated load will be greater and greater. Thus the following diagram and table (Fig.
1.2.4 and Table 1.2.1) shows the convergence analysis of Case I. respect to the deflection and
bending moment. The deflection converges to the analytical solution (wg = 2.07 mm) and the
bending moment converges to infinite.




Verification Examples FEM-Design 18

3,0 16
25 14
12
— 2,0 =
) 10 £
E E
= 15 8 %
£ B
Q Q
% 1,0 6 é
A ,/ —l— Deflection 4 e
0,5 ) .
—&— Bending moment 2 E
0,0 0
0 5000 10000 15000 20000 25000 30000 35000
Number of elements

Figure 1.2.4 — Convergence analysis regarding to deflection and bending moment

Number of elements | Deflection Bending moment Average element size [m]
[pes.] [ [KNm/m]
341 2,034 2,73 0,5
533 2,057 391 04
957 2,060 3,62 0,3
2035 2,068 433 0,2
7994 2,072 5,49 0,1
31719 2,073 6,40 0,05
31772 2,075 10,70 Local refinement 1
31812 2,076 14,30 Local refinement 2
Table 1.2.1 — The convergence analysis

Download links to the example files:
Clamped:

http://download.strusoft.com/FEM-Design/inst1 70x/models/1.2 Calculation of a circular plate
with concentrated force at its center clamped.str
Simply supported:

http://download.strusoft.com/FEM-Design/inst170x/models/1.2 Calculation of a circular plate
with concentrated force at its center simplysup.str



http://download.strusoft.com/FEM-Design/inst170x/models/1.2%20Calculation%20of%20a%20circular%20plate%20with%20concentrated%20force%20at%20its%20center%20simplysup.str
http://download.strusoft.com/FEM-Design/inst170x/models/1.2%20Calculation%20of%20a%20circular%20plate%20with%20concentrated%20force%20at%20its%20center%20simplysup.str
http://download.strusoft.com/FEM-Design/inst170x/models/1.2%20Calculation%20of%20a%20circular%20plate%20with%20concentrated%20force%20at%20its%20center%20clamped.str
http://download.strusoft.com/FEM-Design/inst170x/models/1.2%20Calculation%20of%20a%20circular%20plate%20with%20concentrated%20force%20at%20its%20center%20clamped.str
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1.3 A simply supported square plate with uniform load

In this example a simply supported concrete square plate will be analyzed. The external load is a
uniform distributed load (see Fig. 1.3.1). We compare the maximum displacements and
maximum bending moments of the analytical solution of Kirchhoff's plate theory and finite
element results.

The input parameters are in this table:

The intensity of the uniform load p =40 kKN/m*
The thickness of the plate h=0.25m
The edge of the square plate a=5m

The elastic modulus E =30 GPa
Poisson's ratio v=0.2

The ratio between the span and the thickness is a/h = 20. It means that based on the geometry
the shear deformation may have effect on the maximum deflection. It is important because
FEM-Design uses the Mindlin plate theory (considering the shear deformation, see Scientific
Manual for more details), therefore in this case the results of Kirchhoff's theory and the finite
element result could be different from each other due to the effect of shear deformations.

Vv

Figure 1.3.1 — The square plate with simply supported e&’ges, uniform load and the default mesh

Based on Kirchhoff's plate theory [2][3] the maximum deflection is in the center of the simply
supported square plate and its intensity can be given with the following closed form:

4
W =0.00416 —L2
Eh

12(1-v?)

13
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The maximum bending moment in the plate if the Poisson's ratio v =0.2:

M, =0.0469 pa®

According to the input parameters and the analytical solutions the results of this problem are the
following:

The deflection at the center of the plate:
40-5*
30000000-0.25
12(1-0.2%)

W e =0.00416 ( ) =0.002556m=2.556mm W, =2.632 mm

The bending moment at the center of the plate:

M, =0.0469-40-5=46.9 KNI M, . =4597 KM
m m

Next to the analytical solutions the results of the FE calculations are also indicated (see Fig.
1.3.2 and 1.3.3). The difference is less than 3% and it also comes from the fact that FEM-Design
considers the shear deformation (Mindlin plate theory).

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/1.3 A simply supported square plate
with uniform load.str

| [\\ NI R
Eiilitiiilisitsisey
ild

)

i

Al
Al

Figure 1.3.2 — The deflected shape [mm)] and the reaction forces [KN/m] with the default mesh



http://download.strusoft.com/FEM-Design/inst170x/models/1.3%20A%20simply%20supported%20square%20plate%20with%20uniform%20load.str
http://download.strusoft.com/FEM-Design/inst170x/models/1.3%20A%20simply%20supported%20square%20plate%20with%20uniform%20load.str
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Figure 1.3.3 — The internal forces; m, — m, — m,, [KNm/m]
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1.4 Peak smoothing of the bending moments in a flat slab

Let's consider a flat slab with 8m - 8m raster for the supporting columns (see Fig. 1.4.1). With
the aim of Ref. [16] if the flat slab field assumed to infinite (with the proper consideration of the
boundary conditions (line supports on the edges)) we can get “precise” results for the bending
moment with three different consideration of the supporting effect of the columns. The load is a
constant distributed load (p=20 kN/m?). The thickness of the slab is 40 cm, the columns are
80cm/80cm, the Young's modulus is E.,=31 GPa, the Poisson's ratio v=0.167. We neglect the
creep effect.

Figure 1.4.1 — The slab with 8m -8m raster for the columns with constant distributed load

According to Ref. [16] the first modelling condition (Type a)) for a supporting column is a
vertical point support (see Fig. 1.4.2). The reaction at this point support is:

R,=p-L-L=20-8-8=1280kN

According to Ref. [16] the second modelling condition (Type b)) for a supporting column is a
constant distributed reaction along the cross-section of the column (see Fig. 1.4.3).
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R, 1280

el =2000 kN/m’

r,=

Figure 1.4.3 — Type b) supporting condition

According to Ref. [16] the third modelling condition (Type c)) for a supporting column is a
constant distributed reaction (along the cross-section of the column) for half of the resultant
reaction force and concentrated reactions at the corner of the column with half of the resultant
reaction (one concentrated reaction represent the quarter of the half of the resultant reaction)
(see Fig. 1.4.4).

2000

Ty 2 R, 1280
220 1000 kN/m? ; R =—t=r=0l
<272 m <24 24

=160kN

Figure 1.4.4 — Type c¢) supporting condition

In Ref. [16] there are results for the bending moment distribution of the slab (at the line along
the columns and at middle line of the one slab field) for the three different types of the indicated
column reaction conditions.

First of all we will modelling the exactly same column supporting conditions in FEM-Design
(Type a), Type b) and Type c)) and then we will use the different peak smoothing options in
FEM-Design with Type a) support condition.

Ref. [16] states that the moment distribution in case of Type b) and c) are closer to the reality.
We will compare these results with FEM-Design different peak smoothing option results with
the application of Type a) support condition.

We compared and analyzed the m, values by the different support conditions/options and
indicated the bending moments at the section above the columns and at the section at the middle
of one slab field (see Fig. 1.4.5).
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5 = &l
u i H

& = =l

Figure 1.4.5 — The considered sections

In FEM-Design we used the following settings:

Calculation was performed with “fine” finite element group. The element size was 0.25 m on
the slab (we didn't use any refinement, see Fig. 1.4.1 and 1.4.6). By the peak smoothing
consideration we used the following settings (see Fig. 1.4.7).

Average element size of ﬁinns -E |

I 0K

4
o
il [

T
£ T 5
am] 0.25000 =
Calculate automatically

Figure 1.4.6 — The average element size setting

Q Settings . .
B Emarment | Automatic settings

-3 Drawing
i Calculation Auto peak smoothing region around...
- Code

[ Beam end paints

- Soil calculation e el ot

g M‘Rjeif o [ Truss end points
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Figure 1.4.7 — The adjusted settings in this example -.
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Fig. 1.4.8 shows the m, bending moment results at the section at the middle of one slab field
along the indicated light blue line (see Fig. 1.4.5).

Positive bending moment along middle section

Ref. [16] Type a)
Ref. [16] Type b)
Ref. [16] Type c¢)
—— FEM-Design Type a)
—— FEM-Design Type b)
FEM-Design Type c)
—— FEM-Design Higher Order Smoothing
FEM-Design Constant Smoothing

70

[e2]
(4]

D
o

Bending moment [kNm/m]
)
o

50
45
40
0 0,5 1 1,5 2 2,5 3 3,5 4
Distance [m]
Figure 1.4.8

Fig. 1.4.9 shows the m, bending moment results at the section above the columns along the
indicated black line (see Fig. 1.4.5).

Negative bending moment along column section

0
50 0 0,5 1 1,5 2 2.5 3 35D 4

-100
g -150
z -200
= Ref. [16] Type a)
g -250
= Ref. [16] Type b)
g -300 Ref
s ef. [16] Type ¢)
‘-é -350 —— FEM-Design Type a)
2 -400 —— FEM-Design Type b)

450 FEM-Design Type c)

500 —— FEM-Design Higher Order Smoothing

FEM-Design Constant Smoothing
-550

Distance [m]
Figure 1.4.9
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We can say that Ref. [16] results are identical with the FEM-Design results without using the
peak smoothing functions in the program (see Fig. 1.4.8-9). From Fig. 1.4.8 it is obvious that the
bending moment results at the section at the middle of one slab field is almost independent from
the support condition type.

From Fig. 1.4.9 it is obvious that the negative moment results at the section above the columns
is highly depend on the supporting condition type. The theoretical solution above the support by
Type a) would be infinite if we would use infinitely small element size (see also the bending
moment result in Chapter 1.2 under concentrated point load).

If we check the Higher Order Smoothing results in FEM-Design with Type a) support condition
we can say that these results are close to the results from Ref. [16] support condition Type b)
(see Fig. 1.4.9).

If we check the Constant Smoothing results in FEM-Design with Type a) support condition we
can say that these result are very close to the results from Ref. [16] support condition Type c).

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst180x/models/1.4 Peak smoothing.str



http://download.strusoft.com/FEM-Design/inst180x/models/1.4%20Peak%20smoothing.str
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2 Second order analysis

2.1 A column with vertical and horizontal loads

We would like to analyze the following column (see Fig. 2.1.1) with second order theory. First
of all we make a hand calculation with third order theory according to Ref. [6] and [8] with
stability functions. After this step we compare the results with FEM-Design. In this moment we
need to consider that in FEM-Design second order analysis is implemented and the hand
calculation will be based on third order theory therefore the final results won't be exactly the
same. By FEM-Design calulation we splitted the column into three bar elements thus the finite
element number of the bars was three for more precise results.

The input parameters:

Elastic modulus E =30 GPa

Normal force P =2468 kN

Horizontal load q=10 kN/m

Cross section 0.2 m x 0.4 m (rectangle)
Second moment of inertia in the relevant direction I, =0.0002667 m*
Column length L=4m

c—
~

A

Q°E“

F YYVYVYVYVYVYYVY

/

N

LN

Figure 2.1.1 — The column with vertical and horizontal loads

According to Ref. [6] and [8] first of all we need to calculate the following assistant quantities:

P P 2468 0500
p_P__ 2 [ 2 S
E | 1m"El °30000000-0.0002667
e 42
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The constants based on this value for the appropriate stability functions:
§=3.294 ; ¢=0.666 ; f=1.104

With these values the bending moments and the shear forces based on third order theory and
FEM-Design calculation:

2 2
Mczamped=f(1+c)qé :1.104(1+0.666)10'4 S2452KNM  Mypupmmed=25.55KNm
Mroller = 0.0 kNm MzndFEMm”er _ 0.0 kNm
f(1+c)|[qL 1.104(1+0.666) ] 10-4
= 1+———[| L= |=[ 1+ s
Vclamped [ 6 2 6 2 2 6 1 3kN
V ndrevtciampea = 26.38 kN
Vm”er:ll f(16+c) %Hl_1.104(1;0.666)](102.4):13_871(N

VanFEMroller = 1 3 : 6 1 kNm

The differences are less than 5% between the hand and FE calculations.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst170x/models/2.1 A column with vertical and

horizontal loads.str
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;/ E \\ /’/L %\\\ /
He Hep L2499 -19.96 <P 14 \ 2638 25.55 b
Figure 2.1.2 — The shear [kKN] and bending moment [KNm] diagram with I* and 2" order theory



http://download.strusoft.com/FEM-Design/inst170x/models/2.1%20A%20column%20with%20vertical%20and%20horizontal%20loads.str
http://download.strusoft.com/FEM-Design/inst170x/models/2.1%20A%20column%20with%20vertical%20and%20horizontal%20loads.str
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e e

Figure 2.1.3 — The lateral translations [mm] with 1* and 2" order theory
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2.2 A plate with in-plane and out-of-plane loads

In this chapter we will analyze a rectangular plate with single supported four edges. The load is
a specific normal force at the shorter edge and a lateral distributed total load perpendicular to the
plate (see Fig. 2.2.1). The displacement and the bending moment are the question based on a 2™
order analysis. First of all we calculate the results with analytical solution and then we compare
the results with FE calculations.

In this case the material and the geometric properties are the following:

The thickness of the plate h=0.05m

The dimensions of the plate a=8m;b=6m
The elastic modulus E =210 GPa
Poisson's ratio v=0.3

The specific normal force ny= 1000 kN/m
The lateral distributed load q. = 10 kN/m?

Figure 2.2.1 — The single supported edges, the lateral distributed load and the specific normal force

The maximum displacement and moments based on the 1* order linear calculation:

w, =3538mm , m_ =18.05KNT )5 KNm —13.68XNm

X, max m i y, max m 2 Xy, max

Based on Chapter 3.2 the critical specific normal force for this example is:

n. =2860 N
m

If the applied specific normal force is not so close to the critical value (now it is lower than the
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half of the critical value) we can assume the second order displacements and internal forces

based on the linear solutions with the following formulas (with blue highlight we indicated the
results of the FE calculation):

W, o =W, 1 =35.38 1 =54.41mm |, W, o ey =54.69mm
’ o | 1000 2nd
n, 2860
1 1 kNm kNm
= =18.05 =27.76—— =28.50——
mx,max,an mx,max nx 1_ 1000 m s mx,max,an,FEM m
1";;: 2860
1 1 kNm kNm
m}’,max,an:my,max n, =25.62 I 1000 :394OT B my,max,2nd,FEM:40'3OT
= 2860

kNm kNm

1 1
= =13.68 =21.04 —— =20.53——
xy, max,2nd mxy,max 1_ nx 1_ 1000 m s mxy,max,an,FEM m
. 2860

The differences are less than 3% between the hand and FEM-Design calculations.

m

Figure 2.2.2 shows the problem in FEM-Design with the default mesh.

\\\\\ >;E
Figure 2.2.2 — The single supported slab with in-plane and out-of-plane loads

The following figures show the moment distribution in the plate and the displacements with
FEM-Design according to 1 and 2™ order theory.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/2.2 A plate with in-plane and out-
of-plane loads.str



http://download.strusoft.com/FEM-Design/inst170x/models/2.2%20A%20plate%20with%20in-plane%20and%20out-of-plane%20loads.str
http://download.strusoft.com/FEM-Design/inst170x/models/2.2%20A%20plate%20with%20in-plane%20and%20out-of-plane%20loads.str
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Figure 2.2.3 — The m, [KNm/m] moment with I and 2" order analysis

Figure 2.2.4 — The m, [KNm/m] moment with 1* and 2" order analysis

Figure 2.2.5 — The m,, [KNm/m] moment with I*' and 2" order analysis
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Figure 2.2.6 — The vertical translations [mm] with I* and 2" order analysis
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3 Stability analysis

3.1 Flexural buckling analysis of a beam modell with different boundary
conditions

The cross section is a rectangular section see Fig. 3.1.1
The material C 20/25 concrete
The elastic modulus E =30 GPa

The second moment of inertia about the weak axis L,=2.667"10"* m*
The length of the column L=4m

The boundary conditions see Fig. 3.1.1

lﬂ% foTa

—-
b=0.4 m

=4 m

L

a=0.2 E

N

N
177777777

Figure 3.1.1 — The buckling problem with the different boundary conditions and the cross section

The critical load parameters according to the Euler's theory are as follows and next to the
analytical solutions [1] the relevant results of the FEM-Design calculation can be seen. By the
calculation we splitted the beams to five finite elements to get more accurate buckling mode
shapes (see Fig. 3.1.2).

Pinned-pinned boundary condition:

_7’El

crl 2
L

—4934.8kN F oy =4910.9kN
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Fixed-pinned boundary condition:

2
El
”2:(07;9T2)2: 10094.1kN  F_,..,,=9974.6kN

Fixed-fixed boundary condition:

T’El
= 2=19739.2kN F o= 19318.7kN

F =
> (0.5L)

Fixed-free boundary condition:
_7’El,

F
crd (2L)2

—1233.7kN Fpu=1233.1kN

The differences between the two calculations are less than 3% but keep in mind that FEM-
Design considers the shear deformation therefore we can be sure that the Euler's results give a
bit higher critical values in these cases. Fig. 3.1.2 shows the first mode shapes of the problems
with the different boundary conditions.

| g™ [ £
[N R

| &,

~
.

Figure 3.1.2 — The buckling mode shapes for different boundary conditions
pinned-pinned; fixed-pinned; fixed-fixed; fixed-free
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Download links to the example files:

http://download.strusoft.com/FEM-Design/inst1 70x/models/3.1 Flexural buckling analysis of a

beam modell with different boundary conditions fixed-free.str

http://download.strusoft.com/FEM-Design/inst1 70x/models/3.1 Flexural buckling analysis of a

beam modell with different boundary conditions pinned-pinned.str



http://download.strusoft.com/FEM-Design/inst170x/models/3.1%20Flexural%20buckling%20analysis%20of%20a%20beam%20modell%20with%20different%20boundary%20conditions%20pinned-pinned.str
http://download.strusoft.com/FEM-Design/inst170x/models/3.1%20Flexural%20buckling%20analysis%20of%20a%20beam%20modell%20with%20different%20boundary%20conditions%20pinned-pinned.str
http://download.strusoft.com/FEM-Design/inst170x/models/3.1%20Flexural%20buckling%20analysis%20of%20a%20beam%20modell%20with%20different%20boundary%20conditions%20fixed-free.str
http://download.strusoft.com/FEM-Design/inst170x/models/3.1%20Flexural%20buckling%20analysis%20of%20a%20beam%20modell%20with%20different%20boundary%20conditions%20fixed-free.str
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3.2 Buckling analysis of a plate with shell modell

In this chapter we will analyze a rectangular plate with simply supported four edges. The load is
a specific normal force at the shorter edge (see Fig. 3.2.1). The critical force parameters are the
questions due to this edge load, therefore it is a stability problem of a plate.

In this case the material and the geometric properties are the following:

The thickness of the plate h=0.05m

The dimensions of the plate a=8m;b=6m
The elastic modulus E =210 GPa
Poisson's ratio v=0.73

The solutions of the differential equation of the plate buckling problem are as follows [6]:

2

b n 2 12(1-v%)
ncr:(m +nZ) b2 > m=1,2,3... 5 n=1,2,3...
a m

EW )

Figure 3.2.1 — The simply supported edges and the specific normal force

Figure 3.2.2 shows the problem in FEM-Design with the default mesh.
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——

Figure 3.2.2 — The stability problem of a plate with simply supported edges

According to the analytical solution the first five critical load parameters are:

2( 210000000'0.053)
2

. 2 12(1-0.3?
R 1= %+11 8 (62 ) :2860'36%\1 nchEM1:2862-58kHN
m=2 , n=1
2(210000000-0.053
2 2
2.6 12 12(1-0.3%) kN kN
2= T+2 62 =309377§ nchEM2:3109'96E
m=3 , n=1
2(210000000-0.053
2 2
3.6 18 12(1-0.3%) kN KN
3= ?"'3 62 :4784'56; nchEM3:4884'9OH
m=4 , n=1
2(210000000-0.053
2 2
4.6 1°8 12(1-0.3%) kN kN
no=| "5+ = =7322.53 M yreniy=1655.58—
m=3 , n=2
2(210000000-0.053
2 2
3.6 2°8 12(1-0.3%) kN KN

Next to these values we indicated the critical load parameters what were calculated with FEM-
Design.




Verification Examples FEM-Design 18

The difference between the calculations less than 5%.

Figure 3.2.3 shows the first five stability mode shapes of the rectangular simply supported plate.

Figure 3.2.3 — The first five stability mode shapes of the described problem

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst170x/models/3.2 Buckling analysis of a plate
with shell modell.str



http://download.strusoft.com/FEM-Design/inst170x/models/3.2%20Buckling%20analysis%20of%20a%20plate%20with%20shell%20modell.str
http://download.strusoft.com/FEM-Design/inst170x/models/3.2%20Buckling%20analysis%20of%20a%20plate%20with%20shell%20modell.str
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3.3 Lateral torsional buckling of an I section with shell modell

The purpose of this example is calculate the lateral torsional critical moment of the following
simply supported beam (see Fig. 3.3.1).

¢ Y

L=10m
# #

Figure 3.3.1 — The static frame of a simply supported beam loaded with bending moments at both ends

The length of the beam L=10m
The cross section see Fig. 3.3.2
The warping constant of the section I,= 125841 cm®
The St. Venant torsional inertia I,=15.34 cm*
The minor axis second moment of area I,=602.7 cm*
The elastic modulus E =210 GPa
The shear modulus G =80.77 GPa
§

30.00 cm

[ |

Figure 3.3.2 — The dimensions of the double symmetric cross section

In this case the critical moment can be calculated with the following formula based on the
analytical solution [6]:
7°El. |1, L*GI,
o 2 -+ 2
L I. n°EI

M

z

=4328 kNcm

. =Jr2-21000-602.7\/125841+10002-8077-15.34
: 1000 602.7  7.21000-602.7

34
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In FEM-Design a shell modell was built to analyze this problem. The moment loads in the shell
model were considered with line loads at the end of the flanges (see Fig. 3.3.3).

The supports provides the simple supported beam effects with a fork support for the shell model
(see Fig. 3.3.3).

Figure 3.3.3 — The FEM model with the supports and the loads (moments) at the ends

From the FEM-Design stability calculation the critical moment value for this lateral torsional
buckling problem is:

M, ep=4363kNem

The critical shape is in Fig 3.3.4. The finite element mesh size was provided based on the
automatic mesh generator of FEM-Design.

Figure 3.3.4 — The critical mode shape of the problem

The difference between the two calculated critical moments is less than 1%.
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Download link to the example file:

FEM-Design file:
http://download.strusoft.com/FEM-Design/inst1 70x/models/3.3 Lateral torsional buckling of an

I section with shell modell.str

Section Editor file for cross-sectional properties:

http://download.strusoft.com/FEM-Design/inst170x/models/3.3 Lateral torsional buckling of an
I section with shell modell.sec



http://download.strusoft.com/FEM-Design/inst170x/models/3.3%20Lateral%20torsional%20buckling%20of%20an%20I%20section%20with%20shell%20modell.sec
http://download.strusoft.com/FEM-Design/inst170x/models/3.3%20Lateral%20torsional%20buckling%20of%20an%20I%20section%20with%20shell%20modell.sec
http://download.strusoft.com/FEM-Design/inst170x/models/3.3%20Lateral%20torsional%20buckling%20of%20an%20I%20section%20with%20shell%20modell.str
http://download.strusoft.com/FEM-Design/inst170x/models/3.3%20Lateral%20torsional%20buckling%20of%20an%20I%20section%20with%20shell%20modell.str
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3.4 Lateral torsional buckling of a cantilever with elongated rectangle section

The purpose of this example is calculate the critical force at the end of a cantilever beam (see
Fig. 3.4.1). If the load is increasing the state of the cantilever will be unstable due to lateral
torsional buckling.

‘ N

Figure 3.4.1 — The cantilever beam with concentrated load

The input parameters:

The length of the beam is L=10m

The cross section t =40 mm; h =438 mm; see Fig. 3.4.1
The St. Venant torsional inertia I,= 8806246 mm*

The minor axis second moment of area I,= 2336000 mm*

The elastic modulus E =210 GPa

The shear modulus G =80.77 GPa

In this case (elongated rectangle cross section with cantilever boundary condition) the critical
concentrated force at the end can be calculated with the following formula based on analytical
solution [ask for the reference from Support team]:

P

cr

_4.01E12\/G1t
2 VEL

=23687N=23.69kN

p _4.01:210000-2336000 \/ 807708806246
¢ 10000° 210000-2336000
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In FEM-Design a shell modell was built to analyze this problem. The concentrated load at the
end of the cantilever was considered at the top of the beam (see Fig. 3.4.2).

Figure 3.4.2 — The FE model of the cantilever beam with the default mesh

With the FEM-Design stability calculation the critical concentrated force value for this lateral
torsional buckling problem is:

P ooy =24.00kN

The critical shape is in Fig 3.4.3. The finite element mesh size was provided based on the
automatic mesh generator of FEM-Design.

Figure 3.4.3 — The critical mode shape of the problem

The difference between the two calculated critical load parameters is less than 2%.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst170x/models/3.4 Lateral torsional buckling of a
cantilever with elongated rectangle section.str



http://download.strusoft.com/FEM-Design/inst170x/models/3.4%20Lateral%20torsional%20buckling%20of%20a%20cantilever%20with%20elongated%20rectangle%20section.str
http://download.strusoft.com/FEM-Design/inst170x/models/3.4%20Lateral%20torsional%20buckling%20of%20a%20cantilever%20with%20elongated%20rectangle%20section.str
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4 Calculation of eigenfrequencies with linear dynamic theory

4.1 Continuous mass distribution on a cantilever column

Column height H=4m
The cross section square with 0.4 m edge
The second moment of inertia [=0.002133 m*
The area of the cross section A=0.16 m*
The shear correction factor p=5/6=0.8333
The elastic modulus E =30 GPa
The shear modulus G=12.5 GPa
The specific self-weight of the column v =25 kN/m?
The mass of the column m=1.631t

g |

E

=

=

=

2l =

gl ¥

) T

g

=

£

=

3

Figure 4.1.1 — The cantilevg;ﬂ WV;;}Z continuous mass distribution

Based on the analytical solution [4] the angular frequencies for this case is:

El
Wp=Up\|~— 3

Tz 3 Up=3.52;5u,,=22.03; uy=61.7

if only the bending deformations are considered.

The angular frequencies are [4]:




Verification Examples FEM-Design 18

wsz‘u&\/% ; Ug=05mu,=15r;u,;=25r

if only the shear deformations are considered.

Based on these two equations (considering bending and shear deformation) using the Foppl
theorem the angular frequency for a continuous mass distribution column is:

1.1

w, wWp Wg

Based on the given equations the first three angular frequencies separately for bending and shear
deformations are:

w3,=3.52\/30000000'0'0302133 e 16)
1.631-4 s
%2:22.03\/30000000-0.0302133:545.41
16314 s
v, —617 \/ 30000000-0.002133 _ 5 5 1
1.631-4 S
0.8333-12500000-0.16 1
~0.5 —793.91
Dsi ”\/ 1.631-4 s
0.8333-12500000-0.16 1
=15 —2381.81
@s2 ”\/ 1.631-4 s
0.8333-12500000-0.16 1
=25 ~3969.6 L
Dss ”\/ 16314 s

According to the Foppl theorem the resultant first three angular frequencies of the problem are:

0, =86.6391 wn2=531.64§ w,=1425.81
S S

And based on these results the first three eigenfrequencies are (f = w/2x)):

f,,1=13.789% , f,,2=84.613é , fn3=226.923é
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In FEM-Design to consider the continuous mass distribution 200 beam elements were used for
the cantilever column. The first three planar mode shapes are as follows according to the FE
calculation:

fFEM1=13.7SO§ , fFEM2=83.636§ , fFEM3=223.326é

The first three mode shapes can be seen in Fig. 4.1.2.

Figure 4.1.2 — The first three mode shapes for the cantilever with continuous mass distribution

The differences between the analytical and FE solutions are less than 2%.
Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/4.1 Continuous mass distribution on
a cantilever column.str



http://download.strusoft.com/FEM-Design/inst170x/models/4.1%20Continuous%20mass%20distribution%20on%20a%20cantilever%20column.str
http://download.strusoft.com/FEM-Design/inst170x/models/4.1%20Continuous%20mass%20distribution%20on%20a%20cantilever%20column.str
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4.2 Free vibration shapes of a clamped circular plate due to its self-weight

In the next example we will analyze a circular clamped plate. The eigenfrequencies are the
question due to the self-weight of the slab.

In this case the material and the geometric properties are the following:

The thickness of the plate h=0.05m
The radius of the circular plate R=5m

The elastic modulus E =210 GPa
Poisson's ratio v=0.3

The density p=7.85t/m’

The solution of the dynamic differential equation for the first two angular frequencies of a
clamped circular plate are [5]:

ENW
2 12(1—v2
a)nm:%ﬁmz (ph ) , B,=1015 | B,=1468

Figure 4.2.1 shows the problem in FEM-Design with the clamped edges and with the default
mesh.

Figure 4.2.1 — The clamped circular plate and the default finite element mesh
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According to the analytical solution the first two angular frequencies are:

(210000000-0.053)

2 12(1-0.3%) 1 1 1
JT 2 — — —

W= 52 1.015 7.85-0.05 31'83.9 s J 10=5.0006 S S 10ren=5.129 S

210000000-0.05°
12(1-0.3%)
7.85-0.05

1 1
— =10.731—
s s fIIFEM B

0, =T 1.468° =66.58% . £,=10.60

Based on the angular frequencies we can calculate the eigenfrequencies in a very easy way. Next
to these values we indicated the eigenfrequencies which were calculated with FEM-Design.

The differences between the calculations are less than 2%.

Figure 4.2.2 shows the first two vibration mode shapes of the circular clamped plate.

Figure 4.2.2 — The first two vibration shape mode of a clamped circular plate

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/4.2 Free vibration shapes of a
clamped circular plate due to its self-weight.str



http://download.strusoft.com/FEM-Design/inst170x/models/4.2%20Free%20vibration%20shapes%20of%20a%20clamped%20circular%20plate%20due%20to%20its%20self-weight.str
http://download.strusoft.com/FEM-Design/inst170x/models/4.2%20Free%20vibration%20shapes%20of%20a%20clamped%20circular%20plate%20due%20to%20its%20self-weight.str
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5 Seismic calculation

5.1 Lateral force method with linear shape distribution on a cantilever

Inputs:
Column height H=10m
The cross section square with 0.4 m edge
The second moment of inertia [=0.002133 m*
The elastic modulus E=31GPa
The concentrated mass points 10 pieces of 1.0 t (see Fig. 5.1.1)
The total mass m=10.0t

000 t 1.000 t

é ' 1.198 kN -1.198

1.000 t % 1.000 t
N 1.078 kN -2.276
1.0b0 t N 1& 0.958 kN -3.234
1.000 t % 1.000 t
N @ 0.838 kN -4.073
1_01&1 1@ 0.719 kN -4.791
1_01L7 é 1&‘5 0.599 kN -5.390
1_012;1 1& 0.479 kN -5.869
1.000 t g 000 t
0.359 kN -

C\ﬁ: O 6.229
1&: 0 0.240 kN -6.468
1&;: 0.120 kN -6.588

b 0.000 kN D

Figure 5.1.1 — The cantilever column with the concentrated mass points, the first vibration shape [T=0.765
8], the equivalent forces [kN], the shear force diagram [kN] and the bending moment diagram [KNm] with
FEM-Design

First of all based on a hand calculation we determine the first fundamental period:

The first fundamental period of a cantilever column (length H) with a concentrated mass at the
end (m mass) and EI bending stiffness [4]:

2

\/ 3El
m.]—[.3

1 1

T=
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The fundamental period separately for the mass points from bottom to top:

=0.01411s ; T,= 27 —0.03990s ;
\/3 31000000 0.0021333 \/3~31000000~0.0021333
1-2°
=0.07330s ; T,= 2 =0.1129s ;
\/3 31000000 0 0021333 \/3-310000000.0021333
1-4°
=0.1577s ; T,= 2 =0.2073s ;
\/3 31000000 0.0021333 \/3-310000000.0021333
1-6°
=0.2613s ; T,= 2 =0.3192s ;
\/3 31000000 0.0021333 \/331000000-0.0021333
1-8°
T,= 2 =0.3809s ; T,,= 27 —0.4461s .
\/3 :31000000-0.0021333 \/3-31000000-0.0021333
1-9° 1-10°

The approximated period based on these values according to the Dunkerley summary and the
result of FE calculation:

10
C=\/ D> T7=0.7758s Ty, =0.765s
i=1

The difference between the hand calculation and FEM-Design calculation is less than 2%, for
further information on the fundamental period calculation see Chapter 4.

The base shear force according to the fundamental period of vibration (see Fig. 5.1.1) and the
response spectrum (see Fig. 5.1.2):

F\,=S,(T,)m 2=0.6588-10-1.0=6.588 kN

We considered the response acceleration based on the period from FE calculation to get a more
comparable results at the end. Thus the equivalent forces on the different point masses are:

zZ.m. zZ.m.
=6.588 — =6. —
bzz m; 1-1+2-1+3-1+4-1+5-1+6-1+7-1+8-1+9-1+10-1 55
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The equivalent forces from the bottom to the top on each point mass:

F,=0.120kN ; F,=0240kN ; F,=0359kN ; F,=0479kN ; F,=0.599kN ;
F,=0.719kN ; F,=0.838kN ; F,=0.958kN ; F,=1.078kN ; F,,=1.198kN

These forces are identical with the FEM-Design calculation and the shear force and bending
moment diagrams are also identical with the hand calculation.

& 5d [m/s2]

0.000, 0.000

il

Figure 5.1.2 — The response spectrum [T = 0.765 s; Sg= 0.6588 m/s’]

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/5.1 Lateral force method with linear
shape distribution on a cantilever.str



http://download.strusoft.com/FEM-Design/inst170x/models/5.1%20Lateral%20force%20method%20with%20linear%20shape%20distribution%20on%20a%20cantilever.str
http://download.strusoft.com/FEM-Design/inst170x/models/5.1%20Lateral%20force%20method%20with%20linear%20shape%20distribution%20on%20a%20cantilever.str
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5.2 Lateral force method with fundamental mode shape distribution on a

cantilever

Inputs:

Column height

H=10m

The cross section

square with 0.4 m edge

The second moment of inertia

1=0.002133 m*

The elastic modulus

E =31 GPa

The concentrated mass points

10 pieces of 1.0 t (see Fig. 5.1.1)

The total mass

,_.
-

(Q
&9

10 [N 10 [Y 100 [N 100 [N 100 [S 100 [~ 100 [N 100 [~ 100 | 10O

1.000 t

577.6

1.000 t 1.000 t

496.9

1.000 t

,_.
-

416.8

I

1.040 t

,_.
-

338.4
1.000 t 1.000 t
(‘\ﬁ {] 263.3
1.000 t g 1.040 t 193.4
1.000 t 1.000 t 130_6

1(\‘ ‘A 77.4
1(‘\‘ 362
1@‘ ! 9.5

—t4

L)

The base shear force according to the fundamental period of vibration (see Fig. 5.2.1) and the

response spectrum (see Fig. 5.2.2):

F,=5,(T )m2=0.6588-10-1.0=6.588kN

We considered the response acceleration based on the period from FE calculation to get a more

m=10.0t

498 kN -1.498 0.00
1285 kN -2.787 1.50

1081 kN -3.868 4.29

0.878 kN -4.746 8.15

0.683kN  -5.429 12.90
0.501kN  -5.930 18.33

0.339 kN -6.269 \24.26
0201kN g 470 \\30.53
0.094kN 53 \37.00
0.025 kN 6.588 \\43.56
0.000 kN b _@Q 50 15

Figure 5.2.1 — The cantilever column with the concentrated mass points, the first vibration shape with
the value of the eigenvector [T=0.765 s], the equivalent forces [kN], the shear force diagram [kN] and
the bending moment diagram [KNm] with FEM-Design

comparable results at the end. Thus the equivalent forces on the different point masses are:
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§,m; .
Z Sim;

—6.588 Si 1,

s; m;
9.5-1+36.2-1+77.4-1+130.6-1+193.4-1+ 263.3-1+338.4-1+416.8-1+496.9-1+577.6-1 =0.588 2540.1

F,=F,

The equivalent forces from the bottom to the top on each point mass:

F,=0.0246kN ; F,=0.0939kN ; F,=0201kN ; F,=0339kN ; F,=0.502kN ;
F,=0.683kN ; F,=0878kN ;: F,=1081kN ; F,=1289kN ; F, =1498kN

These forces are identical with the FEM-Design calculation and the shear force and bending
moment diagrams are also identical with the hand calculation.

& 5d [m/s2]

(1,000, 0.000 E

Figure 5.2.2 — The response spectrum [T = 0.765 s; Sq= 0.6588 m/s’]

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst170x/models/5.2 Lateral force method with
fundamental mode shape distribution on a cantilever.str



http://download.strusoft.com/FEM-Design/inst170x/models/5.2%20Lateral%20force%20method%20with%20fundamental%20mode%20shape%20distribution%20on%20a%20cantilever.str
http://download.strusoft.com/FEM-Design/inst170x/models/5.2%20Lateral%20force%20method%20with%20fundamental%20mode%20shape%20distribution%20on%20a%20cantilever.str
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5.3 Modal analysis of a concrete frame building

In this chapter we show a worked example for modal analysis on a concrete frame building
according to EN 1998-1:2008 with hand calculation and compare the results with FEM-Design.
This example is partly based on [4]. The geometry, the dimensions, the material and the bracing
system are in Fig. 5.3.1-3 and in the following table. As a bracing system we used trusses with
very large normal stiffness (EA4) to reach pure eigenvectors by the fundamental period
calculation (see Fig. 5.3.2 and Fig. 5.3.5).

Inputs:
Column height/Total height h=32m; H=23.2=64m
The cross sections Columns: 30/30 cm; Beams: 30/50 cm
The second moment of inertia I. = 0.000675 m*; I, = 0.003125 m*
The elastic modulus E =28.80 GPa
The concentrated mass points 12 pieces of 13.358 t on 1* storey and

12 pieces of 11.268 t on 2™ storey
(see Fig. 5.3.2)

The total mass 1* storey: m;=160.3 t
2" storey: my=135.2't
total mass: M =295.5t

Reduction factor for elastic modulus a=0.5

considering the cracking according to EN 1998-

1:2008

Behaviour factors q=1.5,q=1.5
Accidental torsional effect was not considered & =0.05 (damping factor)

] ,/ 7\7\\\
%N\\‘l
s e S S

1 I
= T L=
\L%| | %L\ﬁ =i

Figure 5.3.1 — The concrete frame building with the columns and beams
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The first exercise is the determination of the fundamental periods and mode shapes. There are
several hand calculation modes to get these values but in this chapter the details of the modal
analysis are important therefore we considered the first two fundamental periods based on FEM-
Design calculation (see Fig. 5.3.5). See the details and example on the eigenfrequency
calculation in Chapter 4.

The dead loads and the live loads are considered in the mass points (see Fig. 5.3.2 and the input
table).

13.358

Figure 5.3.2 — The frame building with the masses and bracings

3.20

3.20

6.00

Figure 5.3.3 — The side view of the building
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Type oo 1 - & 5d [m/s2)
Ground ... B - 0.150, 1.570

Figure 5.3.4 — The considered design response specra according to EN 1998-1:2008

20

Figure 5.3.5 — The first two fundamental mode shapes [-], T1=0.704 s; T,=0.252 s
For this figure we splitted the beams/columns to 5-5 finite elements for better visualization of the
eigenvectors but the default mesh was used during the whole FEM calculation

According to the fundamental periods in Fig. 5.3.5 the response accelerations from Fig. 5.3.4
are:

m
T/=0704s  S,=115%

m
7,=0252s  $,=1573

The second step is to calculate the effective modal masses based on this formula:

*_(tbiTmL)z
" @ 'md,
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During the hand calculation we assume that the structure is a two degrees of freedom system in
the x direction with the two storeys, because the first two modal shapes are in the same plane
see Fig. 5.3.5. Thus we only consider the seismic loads in one direction because in this way the
hand calculation is more comprehensible.

o el )

m= Lomase s 223 _g) 0,
(409 73.6] 1603 409 M 2955
' 135 736
(67.6 —44.5][1693 O |1 )
* 0 1352]|1
- =2323t ; 22— 53522_7%
160.3 67.6
67.6 —44.5
| ]l 1352” 445]

According to the assumption of a two degrees of freedom system the sum of the effective modal
masses is equal to the total mass:

m; m, 2723 2323
My M 2720 | 2229 14000
M M 2955 2955 %

Calculation of the base shear forces:

Fo=S,m= =S ,my=1.570-23.23=36.5kN

The equivalent forces come from this formula:

The equivalent forces at the storeys respect to the mode shapes considering the mentioned two
degrees of freedom model:

1603 0 |1
[40.9 73.6][ ” ]
_l160.3 0 ][40,9 0 1352]1
—

0 1352)|73.6 1603 0 [[40.9
409 73.6]| ° '
[ ]l 0 1352 [73.6]

_[120.6
1'115_[183.0]1{1\1
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[67.6 —44.5][160-3 0 ”1]

0 1352
—|1603 0 |['67.6 U s70=| 8198 |4y
0 135.2 || —44.5 (67.6 —44.5] 160.3 0 67.6 —44.52
' Lo 1352)[-445

The equivalent forces on one frame from the six (see Fig. 5.3.1):

pﬂ:[120.6/6]:[20.10]kN

183.0/6] |30.50
p, | 81:98/6 ][ 13.66 |,
~44.52/6] | ~7.420

The shear forces between the storeys respect to the two different mode shapes:

v :[20.1+30.5]:[50.6]kN v :[13.66—7.42]:[ 6.24 ]kN
"lo30s 30.5 o742 ~7.42

The shear forces in the columns respect to the two different mode shapes:

v [ 50-6/2|_[2530] 0y [ 62472 ][ 3.13 |y
30.5/2] [15.25 ~7.42/2] |-3.71

The bending moments in the columns respect to the two different mode shapes from the relevant
shear forces (by the hand calculation we assumed zero bending moment points in the middle of
the columns between the storeys):

M, = 25.30-3.2/2|_| 40.48 KNm M= 3.13-3.2/2 |_| 5.008 KNm
15.25-3.2/2] [24.40 -3.71-3.2/2] |—5.936

The bending moments in the beams respect to the two different mode shapes:

M. =|4048+24.40|_[64.88 )\ M. —|3-008—5.936|_[ =0.928 |\ xin
bt 24.40 24.40 b2 —5.936 —5.936

The SRSS summation on the internal forces:
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\/ﬁ 2 2
v _[ 2530°+3.13 =[25.49]kN M| V40.487+5.008 =[40.79]kNm

© V152524 (=3.717] [15.69 J24407+5.9362| [25.11

M. | V64.88°+(=0.928 =[64.89]kNm
" 1V24.40°+(=5.936)7| [25.11

The CQC summation on the internal forces:

T
—2 0252 558

=T 70704

8 2 1+ 3/2 . 2 3/2
;e E(l+a,)a; _ 8:0.05°(1+0.358)0.358 —0.007588

(1—a, [ +4&8%a,(1+a,,) (1-0.3587 +4-0.05-0.358 (1+0.358)

| 1 0007588
0.007588 1

And based on these values the results of the CQC summation:

V.=

125307 +3.137 +2-25.3-3.13-0.007588 =[25'52]kN
V15.25%+(=3.712+2:15.25-(=3.71)-0.007588 | | 15.67

M —| V40.487+5.008°+2-40.48-5.008-0.007588 :[40.83]kNm
© |V24.40°+5.936>+2-24.40-5.936-0.007588 | 125-16

M :-\/64.882—1-(—0.928)2+2-64.88-(—0.928)-0.007588 :[64.88]kNm
’ _\/24.4024—(—5.936)24—2-24.40-(—5.936-0.007588) 25.07

The following displacements come from the FEM-Design calculation on the complete frame
structure to ensure the comprehensible final results on the P-A effect.

The displacements at the storeys respect to the two different mode shapes considering the
displacement behaviour factor:

u,=q, 9.54 |_q 5| 954 || 1431 |\ u,=q, 0818 |_; 5| 0818 |_| 1.227 | .
17.15 17.15] [25.73 —0.540 —0.540] [—0.810

Based on these values the storey drifting respect to the two different mode shapes:
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14.31

A= _[1431]
2573—1431] [11.42

SRSS summation on the story drifting:

V14.31%+1.2272 :[14.36
V114274 (—2.027)| [11.60

N R v I I P
~0.810—-1.227] |[-2.037

A=

|

P-A effect checking on the total building:

p —|(m+m;)g|_[(160.3+135.2)9.81]_[2899],x

tot ™ - -

m,g 135.2-9.81 1326

v | 64506+6247 |_[3059],

o 2 2111883

6:30.5°+(—7.42) :

_ Pyl 2899-14.36 o, PuxAr 1326:11.60

0,= Vi h =305.9.3200 042 5 0= Vioh 18833200 023

After the hand calculation let's see the results from the FEM-Design calculation and compare
them to each other. Fig. 5.3.6 shows the effective modal masses from the FE calculation.
Practically these values coincide with the hand calculation.

Shape no. T mx' mx'
[-] [s] [%] [t]
1 0.704 92.2 272.374
2 0.252 7.8 23.139
Figure 5.3.6 — The first two fundamental periods and the effective
modal masses from FEM-Design

Fig. 5.3.7 and the following table shows the equivalent resultant shear forces and the base shear
forces respect to the first two mode shapes. The differences between the two calculations are
less than 2%.

Storey 1 equivalent Storey 2 equivalent Base shear force

resultant [kKN] resultant [kKN] [kN]
Hand FEM Hand FEM Hand FEM
Mode shape 1 120.6 121.9 81.98 81.80 303.6 306.9
Mode shape 2 183.0 185.0 -44.52 -45.47 36.50 36.33
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Figure 5.3.7 — The equivalent forces respect to the storeys and the base shear forces for the first two mode
shapes [kN]

Fig. 5.3.8-9 and the following table shows the internal forces after the different summation
methods (SRSS and CQC). The differences between the two calculation methods are less than 2
%. Here by the moments the difference between the hand and FEM calculations (10%) comes
from the simplified moment hand calculation.

Column shear force Column bending moment | Beam bending moment
[kN] [kNm] [kNm]
Storey 1 Storey 2 Storey 1 Storey 2 | Storey 1 Storey 2
SRSS 25.49 15.69 40.79 25.11 64.89 25.11
Hand
SRSS (37.18+45.32)/2=
FEM 25.78 15.89 4105 27.51 59.33 27.51
cQC 25.50 15.67 40.83 2516 | 64.88 25.07
Hand
CQC (37.21+45.36)/2=
FEM 25.80 15.86 4129 27.46 59.32 27.46
= [ T[] [ T [ [ —] /2/7;§h//L/L’/\\\J\i\i\i — 27.51
15.89 15.89 .-?\,' r\{
— — \
I\ 2336 M\ 23336 .
T s~ g™
25.78 ————125.78 L
I I -\ ﬁ\
— » 45,32 R 1 45.32
Figure 5.3.8 — The shear force [kN] and bending moment diagram [KNm)] after the SRSS summation rule
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72746 T 1 27.46
= — S L[y
I"; // \I:\ //
9/ 9/
~/ ~/
o r\/
—115.86 ——15.86 \ i
L L 4\ 1\\
] ] 2331 *\23.337121
37.2% T T 7 3/,
T
e N
o o
25.80 25.80 oo pLy
o\ N\
N N
P % - 45.36 ﬁf 45.36
Figure 5.3.9 — The shear force [kKN] and bending moment diagram [KNm] after the COC summation rule

Fig. 5.3.10 shows the ® values from FEM-Design. The differences between the hand calculation

and FEM-Design calculations are less than 3%.

Storey Theta x
1 0.0420
2| 0.0253

Figure 5.3.10 — The 0 values at the different storeys from FEM-Design

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/5.3 Modal analysis of a concrete
frame building.str



http://download.strusoft.com/FEM-Design/inst170x/models/5.3%20Modal%20analysis%20of%20a%20concrete%20frame%20building.str
http://download.strusoft.com/FEM-Design/inst170x/models/5.3%20Modal%20analysis%20of%20a%20concrete%20frame%20building.str
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6 Calculation considering diaphragms

6.1. A simple calculation with diaphragms

If we apply two diaphragms on the two storeys of the building from Chapter 5.3 then the
eigenfrequencies and the periods will be the same what we indicated in Chapter 5.3 with the
bracing system.

6.2. The calculation of the shear center

In this example we show that how can we calculate the shear center of a storey based on the
FEM-Design calculation. We analyzed a bottom fixed cantilever structure made of three
concrete shear walls which are connected to each other at the edges (see Fig. 6.2.1). The
diaphragm is applied at the top plane of the structure (see also Fig. 6.2.1 right side). If the height
of the structure is high enough then the shear center will be on the same geometry point where it
should be when we consider the complete cross section of the shear walls as a “thin-walled” “C”
cross section (see Fig. 6.2.1 left side). Therefore we calculate by hand the shear center of the
“C” profile assumed to be a thin-walled cross section then compare the results what we can get
from FEM-Design calculation with diaphragms.

Secondly we calculate the idealized bending stiffnesses in the principal rigidity directions by
hand and compare the results what we can calculate with FEM-Design results.

Inputs:
Height of the walls H=63m
The thickness of the walls t=20cm
The width of wall number 1 and 3 wi=w;=4.0m
The width of wall number 2 w;=6.0m
The applied Young's modulus of concrete E =9.396 GPa

63.00

X
Figure 6.2.1 — The geometry of the bracing core and the height of the bottom fixed structure
(the diaphragm is lying on the top plane, see the red line and hatch)
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First of all let's see Fig. 6.2.2. The applied cross section is a symmetric cross section. In the web
the shear stress distribution comes from the shear formula regarding bending with shear (see
Fig. 6.2.2) therefore it is a second order polynom. In the flanges the shear stress distribution is
linear according to the thin walled theory. With the resultant of these shear stress distribution
(see Fig. 6.2.2, V|, V, and V3) the position of the shear center can be calculated based on the
statical (equilibrium) equations.

max

Figure 6.2.2 — The shear stress distribution in a thin-walled cross section if the
shear force acting on the shear center

The shear stress values (see Fig. 6.2.2):

rzljf: - 1'(0‘23'4'3) - =0.6665k—1\2I
(0.2-6 L4620 458 ).0'2

m
12 12 12

VS 1:(02:4340.2:3-1.5) _0.9164 XN
=Y —
)-02

Tonax = -
It 1026 462" 458
12 12 12

m

Based on these stresses the resultant in the flanges and in the web:

_ TtWI: 0.6665-0.2-4

V=V == 2024 _0.2667kN
V2=§(rmx—r)w2t+r w2t=§(0.9164—0.6665)6-0.2+O.6665~6-0.2=O.9997kN

Respect to the equilibrium (sum of the forces):

V=1kN~V,=0.9997kN

And also respect to the equilibrium (if the external load is acting on the shear center, see Fig.
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6.2.2) the sum of the moments:

Vow,=V,xg

LoV 026676
SV, 09997

=1.601m

Thus the shear center is lying on the symmetry axis and it is xs=1.601 m from the web (see Fig.
6.2.2). In FEM-Design the global coordinate system does not coincide with the symmetry axis
of the structure (see Fig. 6.2.1). Therefore we need no transform the results.

Lets be a selected key node at the diaphragm in the global coordinate system (see Fig. 6.2.1):

x,=0m ; y,=0m

Based on the unit forces (1 kN) and moment (1 kNm) on the key node the displacements of the
key node are as follows based on the FEM-Design calculation (see the Scientific Manual
Calculation considering diaphragm chapter also):

According to unit force on key node in X direction:

u,=15852mm  u,=0.72166mm  ¢_=0.29744-10 *rad

According to unit force on key node in Y direction:

u,=072166mm u,=73314mm @_=0.10328-10 ‘rad

According to unit moment on key node around Z direction:

®..=0.16283-10 rad

Based on these finite element results the global coordinates of the shear center of the diaphragm
are:

@, _0_0.10328-10‘2

Xg=X,,— =] :—6343m
s Pz 0.16283-10°
@ 0.29744-10~*

=y, + =0+————=+4+0.1827m
IS m T 0.16283-107

In FEM-Design the coordinates of the middle point of the web are (see Fig. 6.2.1):
X,,=—4919m ; y . =+0.894m

With the distance between these two points we get a comparable solution with the hand
calculation.
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¥sran =\ s % pia (75— Yoia) = V[ —6.343—(—4.919)  +(0.1827 ~0.894'=1.592m

The difference between FEM and hand calculation is less than 1%.

The gravity center of the cross section (Fig. 6.2.2) can be calculated based on the statical
moments. And of course the gravity center lying on the symmetry axis. The distance of the
gravity center from the web is:

.S 2(0.2:4-2)

= 2020 143
YT T T 02(4+6+4) m

With the input Young's modulus and with the second moments of inertia the idealized bending
stiffnesses in the principal directions can be calculated by hand.

3 3 3
EI,=9396-103-(0'2 6, 462 458

_ 108 2
0 T 2 =1.692-10" kNm

0.2-4° 6-0.2°

E12=9396-103-(2 +2(0.2-4(2—1.143)*)+ +0.2:6(1.143)*|=4.585-10" kNm®

With the finite element results we can calculate the translations of the shear center according to
the unit forces and moment on the key node (see the former calculation method).

The distances between the shear center and the selected key node are:
Ax=x4—x,=—6.343—0=—6.343m=-6343mm
Ay=ys—y,=+0.1827—0=+0.1827 m=182.7 mm

The translations of the shear center are as follows:

U =U o, — @ A y=1.5852—0.29744-10"*182.7=1.5798 mm

U=+ @, Ax=0.72166+0.29744-10"*(—6343)=0.5330 mm

Usy =ty — @, Ay=0.72166—0.10328-10 *-182.7=0.5330 mm

Ugy=u,+@.,Ax=7.3314+0.10328-10*-(—6343)=0.7803 mm

Based on these values the translations of the shear center in the principal directions:

2

1.5798-0.7803 |*, o 1002

2

+u

~ , 1.5798+0.7803
u,= Sxy 2 +

2
qux+uSyy 4 qux_uSyy
2 2

=1.8463mm
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2

+0.5330%=

Uu,=

Sy 2 2

2
qux+uSyy _ qux_ uSyy
2

2 1.5798+0.7803 _\/( 1.5798—0.7803

=0.5138 mm

According to these values the angles of the principal rigidity directions:

u,—u _
Oy =arctan IquySH =arctan 1'8463.531?;5798 =26.57°
U,—u -
O 5 = arctan Zusxysm =arctan 0'513553155798 =—63.43°

The directions coincide with the axes of symmetries (see Fig. 6.2.1-2) which is one of the
principal rigidity direction in this case.

Then with FEM-Design results we can calculate the idealized bending stiffnesses of the
structure:

H’ 63’ s 2
El =2 = E Ly =1.622-10°kN
M 3 3(0.5138/1000) Gl m

H’ 63’ Tiar 2
El gy == E Ly =4.514-10'kN
M 3T 3.(1.8463/1000) s o

The difference between FEM and hand calculation is less than 4%.

Download link to the example file:
FEM-Design file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/6.1.1 A simple calculation with
diaphragms.str
Section Editor file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/6.1.2 The calculation of the shear
center.sec



http://download.strusoft.com/FEM-Design/inst170x/models/6.1.2%20The%20calculation%20of%20the%20shear%20center.sec
http://download.strusoft.com/FEM-Design/inst170x/models/6.1.2%20The%20calculation%20of%20the%20shear%20center.sec
http://download.strusoft.com/FEM-Design/inst170x/models/6.1.1%20A%20simple%20calculation%20with%20diaphragms.str
http://download.strusoft.com/FEM-Design/inst170x/models/6.1.1%20A%20simple%20calculation%20with%20diaphragms.str
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7 Calculations considering nonlinear effects

7.1 Uplift calculation

7.1.1 A trusses with limited compression members

In this example a truss will be analyzed. First of all we calculate the normal forces in the truss
members and the maximum deflection for the given concentrated loads. After this step we
calculate the load multiplier when the vertical truss members reaches its limit compression
bearing capacity what we set. See the inputs in the following table. After the hand calulation we
compare the results with the FEM-Design nonlinear calculation results.

Inputs:
Column height/Span length H=20m;L=80m
The cross sections KKR 80x80x6
The area of the cross sections A=1652 mm?
The elastic modulus E =210 GPa, structural steel
The concentrated loads F=40kN
Limited compression of the vertical truss members P..=700 kN

| 4 8 12 16

3 5 7 9 11 13 15 17

H=2m

¢ oF=1

oF

o0F=1

(77777777

Figure 7.1.1.1 — The truss with the concentrated loads and with the
virtual loads for the translation calculation
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The normal forces in the truss members based on the hand calculation (without further details)
are:

N,=N,,=—100kN ; N,=N,=0kN ; N,=N,;=+84.85kN ;
N,=N,=N,=N,=—60.00kN ; N,=N,=+60.00kN ;
N,=N,=+2828kN ; N,=N,=—80.00kN ; N,=—40.00kN

The normal forces in the truss members according to the vertical virtual force (see Fig. 7.1.1.1):

N,=N,,=—05kN ; N,,=N,,,=N,,=0kN ;
N,,=N,;;=N,,=N,,,=+0.7071 kN ;
N,,=N,;=N,,;=N,,,=—05kN ; N,,=N,,,=+0.5kN ;
N,,=N,,,=—10kN

The normal forces in the truss members according to the horizontal virtual force (see Fig.
7.1.1.1):

N,,=N,4=N, =N, =+1.0kN ;
N, =N,5=N,,=N,5=N, =N, 5= N, y=N, =N, ;=N 55N, 5=N, 5= N5, =0kN

The hand calculation of the vertical translation at the mid-span with the virtual force method:

e.= ZN(SN 1,.=0.003841 m=3.841 mm
EAtl

The hand calculation of the horizontal translation at right roller with the virtual force method:

e = ZN SN ,,1,=0.0006918 m=0.6918 mm
EAll

Figure 7.1.1.2 — The truss with the concentrated loads in FEM-Design
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40.0 kN
40.0 kN
40.0 kN
40.0 kN
40.0 kN

-100.00
-100.00

Figure 7.1.1.3 — The reaction forces

< 8 < 8 < 8 < 8 <
o = o 2 (o} 2 o o o
=] ©° (=) i o ' o o =)
N v T T ] [ ~
[ [ ] [ T ]
-100.00 — bxq", -60.00 — -40.00 — -60.00 — 10000 —
@ % )
R , &
- - 4 u <* L] Top ||
3 T N g
= =1 b= o
o =]
[T+ 0
Figure 7.1.1.4 — The normal forces in the truss members
= = = = =
v v v & v
o o o o o)
(=] o (=) (=) (=]
S5 + S5 < S5

0.69

-3.84

Figure 7.1.1.5 — The vertical translation at the mid-span and the horizontal translation at the right roller [mm]|
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The translations and the normal forces in the truss members based on the hand calculation are
identical with the FEM-Design calculation, see Fig. 7.1.1.2-5.

After this step we would like to know the maximum load multiplier when the vertical truss
members reaches its limit compression bearing capacity what we set, P, = 700 kN. The
maximum compression force arises in the side columns, see the hand calculation, N; = (—)100
kN. Therefore the load multiplier based on the hand calculation is A = 7.0.

Let's see the FEM-Design uplift calculation considering the limit compression in the vertical
members.

15898677203

Figure 7.1.1.6 — Large nodal displacements when the side truss
members reached the limit compression value [mm]

i Load combinations @
Mo MName Type |Factor | Induded load cases o QK
C
22 U 7.01 1 L=

Figure 7.1.1.7 — The two different analyzed load multiplier in FEM-Design

With Agpm = 7.00 multiplier the FEM-Design analysis gives the accurate result but with Apey =
7.01 (see Fig. 7.1.1.7) large nodal displacements occurred, see Fig. 7.1.1.6. Thus by this
structure if we neglect the effect of the side members the complete truss became a statically
overdetermined structure. FEM-Design solve this problem with iterative solver due to the fact
that these kind of problems are nonlinear.

Based on the FEM-Design calculation the load multiplier is identical with the hand calculation.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/7.1.1 A trusses with limited
compression members.str



http://download.strusoft.com/FEM-Design/inst170x/models/7.1.1%20A%20trusses%20with%20limited%20compression%20members.str
http://download.strusoft.com/FEM-Design/inst170x/models/7.1.1%20A%20trusses%20with%20limited%20compression%20members.str
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7.1.2 A continuous beam with three supports

In this example we analyse non-linear supports of a beam. Let's consider a continuous beam
with three supports with the following parameters:

Inputs:
Span length L =2 m, total length =2x2 =4 m
The cross sections Rectangle: 120x150 mm
The elastic modulus E =30 GPa, concrete C20/25
Intensity of distributed load (total, partial) p=10kN/m

In Case I. the distribution of the external load and the nonlinearity of the supports differ from
Case II. See the further details below (Fig. 7.1.2.1 and Fig. 7.1.2.8).

a) Case L.

In this case the distributed load is a total load (Fig. 7.1.2.1). In the first part all of the three
supports behave the same way for compression and tension. In the second part of this case the
middle support only bears tension. We calculated in both cases the deflections, shear forces and
bending moments by hand and compared the results with FEM-Design uplift (nonlinear)
calculations.

| 2.00 2.00

Figure 7.1.2.1 — The beam with three supports and uniform distributed load

In first part of this case the maximum deflection comes from the following formula considering
only the bending deformations in the beam:

_21pL'_21 10-2°
" 384 EI 38430000000-0.12-0.15%/12

=0.0008642 m =0.8642 mm

The relevant results with FEM-Design:

i \ //

—_ —_—

0.8834 0.8834
Figure 7.1.2.2 — The deflection [mm] of the beam with three supports (total load)
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The extremums of the shear force without signs:

VJ:%pL:% 10-2=7.5kN ; VZ:%pL=%10-2=12.5kN

The relevant results with FEM-Design:

'75

Figure 7.1.2.3 — The shear diagram [kN] of the beam with three supports (total load)

125> -12.5

The extremums of the bending moment without signs:

9 29 D 1 2 1 2
M ——=——pL =——10-2"=2.812kN s M =—pL°==10-2"=5.0kN
midspan 128 p 128 m middle 8 p 8 m
The relevant results with FEM-Design:
e
nl
N
«® c«
~ «
Figure 7.1.2.4 — The bending moment diagram [KNm] of the beam with three supports (total load)

When the middle support only bear tension (second part of this case) basically under the total
vertical load (Fig. 7.1.2.1) the middle support is not active (support nonlinearity). Therefore it
works as a simply supported beam with two supports. The deflection, the shear forces and the
bending moments are the following:

The maximum deflection comes from the following formula considering only the bending
deformations in the beam:

, 5 plL+L) 5 10-(2+2)"
" 384 EI 384 30000000-0.12-0.15°/12

=0.03292m =32.92mm
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The relevant results with FEM-Design:

— |

33.03
Figure 7.1.2.5 — The deflection [mm] of the beam when the middle support only bear tension (total load)

>

The maximum of the shear force without sign:

1

V=Ep(L+L)= 10(2+2)=20kN

N —

The relevant results with FEM-Design:

Figure 7.1.2.6 — The shear diagram [kN] of the beam when the middle support only bear tension (total load)

The extremum of the bending moment without sign:

M,W%p (L+ L)2=é 10-(2+2)*=20kNm

The relevant results with FEM-Design:

Figure 7.1.2.7 — The bending moment diagram [kKNm] of the beam when the middle support only bear tension
(total load)

The differences between the calculated results by hand and by FEM-Design are less than 2%.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/7.1.2 A continuous beam with three
supports case a.str



http://download.strusoft.com/FEM-Design/inst170x/models/7.1.2%20A%20continuous%20beam%20with%20three%20supports%20case%20a.str
http://download.strusoft.com/FEM-Design/inst170x/models/7.1.2%20A%20continuous%20beam%20with%20three%20supports%20case%20a.str
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b) Case II.

In this case the distributed load is a partial load (Fig. 7.1.2.8). In the first part all of the three
supports behave the same way for compression and tension. In the second part of this case the
right side support only bears compression. We calculate in both cases the deflections, shear
forces and bending moments by hand and compared the results with FEM-Design calculations.

2.00 2.00 |

Figure 7.1.2.8 — The beam with three supports and partial load

The extremums of the deflection come from the following formulas considering only the
bending deformations in the beam (without signs):

21 (p/2)L4+ 5 (pl2)L*_21 10/2-2“Jr 5 10/2-2*
me 384 EI 384 EI 384 EI 384 EI
5 (pi2)’ 2 (p/2)L? 5 10/2:2° 2 10/2:2°

™384 EI 384 EI 384 EI 384 B[ O001Am=06173mm

=0.001461 m=1.461 mm

The relevant results with FEM-Design:
0.6295

~ 7
v//
1.4709

Figure 7.1.2.9 — The deflection [mm] of the beam with three supports (partial load)

The extremums of the shear force without signs:

7 7 9 9

V=" p1="102=875kN : V,=— pL=—10-2=1125kN -
167" 16 SRERETE AT ’
y=L =1 102=125kN

1677 16 '
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The relevant results with FEM-Design:

1112

Figure 7.1.2.10 — The shear diagram [KN] of the beam with three supports (partial load)

1
1.2
— 5l

The extremums of the bending moment without signs:

2 2

(176PL) (176 10'2) I 1

L = =3828kNm : M ., =—plL’=—10-2°=2.5kN
midspan 2p 2-10 3.828 m ; middle 16 p 16 m

The relevant results with FEM-Design:

\

Figure 7.1.2.11 — The bending moment diagram [KNm] of the beam with three supports (partial load)

When the right side support only bear compression (second part of this case) basically under the
partial vertical load (Fig. 7.1.2.8) the right side support is not active (support nonlinearity).
Therefore it works as a simply supported beam with two supports. The deflection, the shear
forces and the bending moments are the following:

The maximum deflection comes from the following formula considering only the bending
deformations in the beam:

5 pL’_ 5 10:2°

- —0.002058m =2.058
midpan = 3ex " FT 384 EI m fm

e

1 pL' 1102

= = =0. 4m=6.584
ran=r5 L=~ 7 =0.006584 m=6.584mm

e
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The relevant results with FEM-Design:

T | |

Figure 7.1.2.12 — The deflection [mm)] of the beam when the right support only bear compression (partial load)

The extremum of the shear force without sign:

1 1
V=1 pL=1210-2=10kN
2P+73

The relevant results with FEM-Design:

Figure 7.1.2.13 — The shear diagram [kN] of the beam when the right support only bear compression (partial load)

1-10.0

The extremum of the bending moment without sign:

Mmax:épLzzéIO-Zz:S.OkNm

The relevant results with FEM-Design:

Figure 7.1.2.14 — The bending moment diagram [KNm] of the beam when the right support only bear
compression (partial load)

The differences between the calculated results by hand and by FEM-Design are less than 2%.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/7.1.2 A continuous beam with three
supports case b.str



http://download.strusoft.com/FEM-Design/inst170x/models/7.1.2%20A%20continuous%20beam%20with%20three%20supports%20case%20b.str
http://download.strusoft.com/FEM-Design/inst170x/models/7.1.2%20A%20continuous%20beam%20with%20three%20supports%20case%20b.str
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7.2 Cracked section analysis by reinforced concrete elements

7.2.1 Cracked deflection of a simly supported beam

Inputs:

Span length

Leff = 72 m

The cross section

Rectangle: b =300 mm; h =450 mm

The elastic modulus of concrete

Em =31.476 GPa, C25/30

The creep factor

P23 = 2.35

Effective elastic modulus of concrete

Ecer = Ecn/(1+025) = 9.396 GPa

Mean tensile strength

fom = 2.565 MPa

Elastic modulus of steel bars E; =200 GPa
Characteristic value of dead load g = 8.5 kN/m
Characteristic value of live load qx = 12.0 kN/m
Live load combination factor v, =0.6
Diameter of the longitudinal reinforcement ¢o; =18 mm
Diameter of the stirrup reinforcement ¢s =8 mm

Area of longitudinal reinforcement

A =5x18t/4 = 1272.3 m?

Nominal concrete cover

Coom = 20 mm

Effective height

d=h-cum— ¢s— ¢/2 =413 mm

Shrinkage strain

Ecs— 0.5 %o

The cross sectional properties without calculation details (considering creep effect):

I. stress stadium second moment of inertia

I,=3.075x10°mm*

II. stress stadium second moment of inertia

I;=2.028x10° mm*

L. stress stadium position of neutral axis

X =256.4 mm

II. stress stadium position of neutral axis

xp = 197.3 mm

i

u Vol

u vy

i

L

eff

o

a

V4
d

7 5p18

11

M

max

Figure 7.2.1.1 — The simply supported RC beam

7

3
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The calculation of deflection according to EN 1992-1-1:

The load value for the quasi-permanent load combination:

kN
pqp:gk+w2qk:8.5+0.6'12: 15.7;

The maximum deflection with cross sectional properties in Stadium 1. (uncracked):

5 p,Ly 5 15.7-7.2*
Wir

- - ~0.01901 m=19.01
17384 E_1, 384 9396000-0.003075 o i

ceff

The maximum deflection with cross sectional properties in Stadium II. (cracked):

5 pply 5 15.7-7.2°

= = ~0.02883 m=28.83
YkrT384E 1, 384 9396000-0.002028 m mm

ceff

The maximum bending moment under the quasi-permanent load (see Fig. 7.2.1.1):

1 1

2
Mmax:_pqpl‘e]f :g

< 15.7-7.2*=101.74kNm

The cracking moment with the mean tensile strength:

1, 0.003075
o= Fem 7= X, 0.45—0.2564 m

The interpolation factor considering the mixture of cracked and uncracked behaviour at the most
unfavourable cross-section:

M\ 2
C—max[l—O.S(Mn:x) ,o]_max[l—o.s(l‘gol;‘;) ,0]20.9198

This value is almost 1.0, it means that the final deflection will be closer to the cracked deflection
than to the uncracked one.

The final deflection with the aim of interpolation factor:

w,=(1-&)w,,+&w, ,=(1-0.9198)19.01+0.9198-28.83=28.04 mm
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This deflection is even greater if we are considering the effect of shrinkage.

The curvatures in uncracked and cracked states due to shrinkage:

E. S (413— )

K, —p s Dal_ 0.5 200 1272.3-(413 356.4):6.896_104L

: E..; I, 1000 9.396 3.075-10 m
E, S (413—

Ky o s Dl 0.5 200 1272.3-(413 597-3>:1,440.10—3L

: E..; I, 10009.396 2.028:10 m

The additional deflection in the two different states due to shrinkage:

wk,mzéLeﬁzx,,cszé7.22-6.896- 107'=0.004469 m=4.469 mm

wkUCS:éLeﬁzKH’CSZ%TZZ'1.440- 107°=0.009331m=9.331 mm

The total deflection considering cracking and the effect of shrinkage:

wkcs: ( 1- C)(Wk.l +Wk.1.cs)+ g (Wk.II-l—Wk.II.cs):
=(1-0.9198)(19.01 +4.469)+0.9198(28.83+9.331)=36.98 mm
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First we modelled the beam with beam elements. In FEM-Design we increased the division
number of the beam finite elements to ten to get the more accurate results.

Figure 7.2.1.2 — The cross section of the RC beam in FEM-Design

Fig. 7.2.1.2 shows the applied cross section and reinforcement with the defined input
parameters.

Figure 7.2.1.3 — The deflection [mm] of the RC bar in FEM-Design with cracked section analysis
(without shrinkage [above], with shrinkage [below])

Fig. 7.2.1.3 shows the deflection after the cracked section analysis without and with considering
shrinkage. The deflection of the beam model in FEM-Design:
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Cracked section analysis without shrinkage: Wz, =27.39 mm

Cracked section analysis with shrinkage: w, ., =35.92mm

The difference between the hand and FEM-Design calculations is less than 3%, but keep in
mind that FEM-Design considers the interpolation factors individually in every finite elements
one by one to get a more accurate result.

Secondly we modelled the beam with shell finite elements. Fig. 7.2.1.4 shows the applied
specific reinforcement with the defined input parameters with slab model.

|

Figure 7.2.1.5 — The deflection [mm] of the RC shell model in FEM-Design with cracked section
analysis (without shrinkage [above], with shrinkage [below])

Fig. 7.2.1.5 shows the deflection and the finite element mesh after the cracked section analysis
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without and with considering shrinkage. The deflection of the shell model in FEM-Design:
Cracked section analysis without shrinkage: W, =27.26 mm

Cracked section analysis with shrinkage: W, =35.50 mm

The difference between the hand and FEM-Design calculations is less than 4% but keep in mind
that FEM-Design considers the interpolation factors individually in every finite elements one by
one to get a more accurate result.

Fig. 7.2.1.6 shows the effect of tension stiffening (without shrinkage effects) in FEM-Design at
the relevant SLS load interval. We indicated the load level where the first crack occured.

- Effect of tension stiffening in FEM-Design

18
[ .

p=15.7 kN/m

—
N

First crack
at mid-span

Load [kN/m]
o

Shell modell
Beam modell
Uncracked
Fully cracked

0 5 10 15 20 25 30 35 40
Deflection [mm]

Figure 7.2.1.6 — The effect of tension stiffening by a simply supported beam

Download link to the example files:
Beam model:

http://download.strusoft.com/FEM-Design/inst1 70x/models/7.2.1 Cracked deflection of a
simply supported beam.beam.str

Shell model:

http://download.strusoft.com/FEM-Design/inst170x/models/7.2.1 Cracked deflection of a
simply supported beam.shell.str



http://download.strusoft.com/FEM-Design/inst170x/models/7.2.1%20Cracked%20deflection%20of%20a%20simply%20supported%20beam.shell.str
http://download.strusoft.com/FEM-Design/inst170x/models/7.2.1%20Cracked%20deflection%20of%20a%20simply%20supported%20beam.shell.str
http://download.strusoft.com/FEM-Design/inst170x/models/7.2.1%20Cracked%20deflection%20of%20a%20simply%20supported%20beam.beam.str
http://download.strusoft.com/FEM-Design/inst170x/models/7.2.1%20Cracked%20deflection%20of%20a%20simply%20supported%20beam.beam.str
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7.2.2 Cracked deflection of a statically indeterminate beam
Inputs:

Span length

Leﬁ‘ = 72 m

The cross section

Rectangle: b =300 mm; h =450 mm

The elastic modulus of concrete

Em =31.476 GPa, C25/30

The creep factor

P23 = 2.35

Effective elastic modulus of concrete

Ecer = Ecn/(1+025) = 9.396 GPa

Mean tensile strength

fom = 2.565 MPa

Elastic modulus of steel bars E;=200 GPa
Characteristic value of dead load g = 8.5 kN/m
Characteristic value of live load qx = 12.0 kN/m
Live load combination factor v, =0.6
Diameter of the longitudinal reinforcement ¢o; =18 mm
Diameter of the stirrup reinforcement 0 =8 mm

Area of longitudinal reinforcement

A =5x18t/4 = 1272.3 m*

Nominal concrete cover

Coom = 20 mm

Effective height

d=h—cCoom— ¢s— $/2 =413 mm

Shrinkage strain

Ecs— 0.5 %o

The cross sectional properties without calculation details (considering creep effect):

I. stress stadium second moment of inertia

I,=3.075x10° mm*

I1. stress stadium second moment of inertia

I;=2.028x10° mm*

L. stress stadium position of neutral axis

X = 256.4 mm

II. stress stadium position of neutral axis

X = 197.3 mm

In this chapter we will calculate the cracked deflection of a statically indeterminate structure
(see Fig. 7.2.2.1).
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uiimrrrrrrruw]"
v

vy v
Y s
.2 Leff .2

M

e

5p18 5418

Figure 7.2.2.1 — The fixed end and a roller boundary conditions
RC beam (statically indeterminate structure)

The maximum deflection with cross sectional properties in Stadium I. (uncracked):

L.} EDx
W= 2.1 Py ey _ 2.1 15.7:7.2 =0.007986 m=7.986 mm

384 E I, 3849396000-0.003075

The maximum deflection with cross sectional properties in Stadium II. (cracked):

2.1 pyley’ _ 2. 15.7.7.2*

WerT384 E 1, 384 9396000-0.002028

=0.01211 m=12.11mm

The maximum bending moment under the quasi-permanent load at the fixed end (see Fig.
7.2.2.1):

M, =tp, L, =115772°=101.74kNm

8 8
The cracking moment with the mean tensile strength:

I,
M. =f 2565M=40.74kNm

" h—x, 0.45—-0.2564

The interpolation factor considering the mixture of cracked and uncracked behaviour at the most
unfavourable cross-section:
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M, \ 40.74 \’
=max|1-0.5 ~1,0 :max[l—O.S( . ),0]20.9198

M, 101.74

This value is almost 1.0, it means that the final deflection will be closer to the cracked deflection
than to the uncracked one with the hand calculation.

The final deflection with the aim of interpolation factor:
w,=(1=&)w,,+&w, ,=(1-0.9198)7.986+0.9198-12.11=11.78 mm

This deflection is even greater if we are considering the effect of shrinkage.

The curvatures in uncracked and cracked states due to shrinkage:

E, S (413—
Kp =t = 03 20 12723413 356'4)=6.896'10’4L
: E.. I, 1000 9.396 3.075-10 m
E, S (413—
K, mp, s Dsdl_ 0.5 200 1272.3-(413 (}97'3>=1.440-1o*3L
: E.. I, 1000 9.396 2.028:10 m
The additional deflection due to shrinkage:
1 1 .
wk.,'cszﬁLe/fzK,,cszﬁ 7.2%-6.896-10 *=0.002979 m=2.979 mm

wkﬂ_mzll—zLeﬂzx,,,w:ll—z%z?1.440-103=0.006221 m=6.221 mm

The total deflection considering cracking and the effect of shrinkage:

Wk.cs: ( 1 - g)(wk.l +Wk.1.cs>+ C (Wk.11+wk.11.cs>:
=(1-0.9198)(7.986+2.979)+0.9198(12.1146.221)=17.74 mm

First we modelled the beam with beam elements. In FEM-Design we increased the division
number of the beam finite elements to ten to get the more accurate results.
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Figure 7.2.2.2 — The cross section of the RC beam in FEM-Design

Fig. 7.2.2.2 shows the applied cross section and reinforcement with the defined input
parameters.

Figure 7.2.2.3 — The deflection [mm] of the RC bar in FEM-Design with cracked section analysis
(without shrinkage [above], with shrinkage [below])

Fig. 7.2.2.3 shows the deflection after the cracked section analysis without and with considering
shrinkage. The deflection of the beam model in FEM-Design:

Cracked section analysis without shrinkage: Wz, =10.62 mm
Cracked section analysis with shrinkage: W, .zm,=15.55 mm

The difference between the hand and FEM-Design calculations is around 10%, but keep in mind
that FEM-Design considers the interpolation factors individually in every finite elements one by
one to get a more accurate result and by a statically indeterminate structure it causes greater
difference.
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Secondly we modelled the beam with shell finite elements. Fig. 7.2.2.4 shows the applied
specific reinforcement with the defined input parameters with slab model.

Figure 7.2.2.5 — The deflection [mm] of the RC shell model in FEM-Design with cracked section
analysis (without shrinkage [above], with shrinkage [below])

Fig. 7.2.2.5 shows the deflection and the finite element mesh after the cracked section analysis
without and with considering shrinkage. The deflection of the shell model in FEM-Design:

Cracked section analysis without shrinkage: W, =10.63 mm

Cracked section analysis with shrinkage: w; ,=15.14 mm
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The difference between the hand and FEM-Design calculations is around 10%, but keep in mind
that FEM-Design considers the interpolation factors individually in every finite elements one by
one to get a more accurate result and by a statically indeterminate structure it causes greater
difference.

Fig. 7.2.2.6 shows the effect of tension stiffening (without shrinkage effects) in FEM-Design at
the relevant SLS load interval. We indicated the load level where the first crack occurred at the
fixed end and at the mid-span.

Effect of tension stiffening in FEM-Design

iy

‘First crack at mid—span‘

=l 12
Z 10
— First crack at
§ 8 the fixed end ”
5 £
Shell modell
4 Beam modell
2 Uncracked
Fully cracked
0~
0 2 4 6 8 10 12 14 16

Deflection [mm]

Figure 7.2.2.6 — The effect of tension stiffening by a statically indeterminate structure

Download link to the example files:

Beam model:

http://download.strusoft.com/FEM-Design/inst1 70x/models/7.2.2 Cracked deflection of a
statically indeterminate beam.beam.str

Shell model:

http://download.strusoft.com/FEM-Design/inst170x/models/7.2.2 Cracked deflection of a
statically indeterminate beam.shell.str



http://download.strusoft.com/FEM-Design/inst170x/models/7.2.2%20Cracked%20deflection%20of%20a%20statically%20indeterminate%20beam.shell.str
http://download.strusoft.com/FEM-Design/inst170x/models/7.2.2%20Cracked%20deflection%20of%20a%20statically%20indeterminate%20beam.shell.str
http://download.strusoft.com/FEM-Design/inst170x/models/7.2.2%20Cracked%20deflection%20of%20a%20statically%20indeterminate%20beam.beam.str
http://download.strusoft.com/FEM-Design/inst170x/models/7.2.2%20Cracked%20deflection%20of%20a%20statically%20indeterminate%20beam.beam.str
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7.2.3 Cracked deflection of a cantilever beam

Inputs:

Span length

Leﬁ‘=4m

The cross section

Rectangle: b =300 mm; h =450 mm

The elastic modulus of concrete

Em =31.476 GPa, C25/30

The creep factor

P23 = 2.35

Effective elastic modulus of concrete

Ecer = Ecn/(1+025) = 9.396 GPa

Mean tensile strength

fom = 2.565 MPa

Elastic modulus of steel bars E;=200 GPa
Characteristic value of dead load g = 8.5 kN/m
Characteristic value of live load qx = 12.0 kN/m
Live load combination factor v, =0.6
Diameter of the longitudinal reinforcement ¢o; =18 mm
Diameter of the stirrup reinforcement 0 =8 mm

Area of longitudinal reinforcement

A =5x18t/4 = 1272.3 m*

Nominal concrete cover

Coom = 20 mm

Effective height

d=h—cCoom— ¢s— $/2 =413 mm

Shrinkage

Ecs— 0.4 %o

The cross sectional properties without calculation details:

I. stress stadium second moment of inertia

I,=3.075x10° mm*

I1. stress stadium second moment of inertia

I;=2.028x10° mm*

L. stress stadium position of neutral axis

X = 256.4 mm

II. stress stadium position of neutral axis

X = 197.3 mm

FYYVYVYYVYYY

A

WAk 5418

-
l—

u
Yy LA
\

Figure 7.2.3.1 — The cantilever RC beam
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The calculation of deflection according to EN 1992-1-1:

The load value for the quasi-permanent load combination:

kN
pqp:gk+1/j2qk:8.5+o.6'12: 15.7;

The maximum deflection with cross sectional properties in Stadium I. (uncracked):

w =l pqueﬁ"4=l 15744
“T8 E., 1, 89396000-0.003075

=0.01739 m=17.39 mm

The maximum deflection with cross sectional properties in Stadium II. (cracked):

L L Pole’ _1 15.7-4*
“ITRE 1, 89396000-0.002028

=0.02637m=26.37mm

The maximum bending moment under the quasi-permanent load:

1 ) 1 2
M =5 Py Loy =7 1574 =125.6kNm

The cracking moment with the mean tensile strength:

1, 0.003075
o= Fem 7= X, 0.45—0.2564 m

The interpolation factor considering the mixture of cracked and uncracked behaviour:

M\ 2
g—max[lo.s(M":x) ,ol—max[lo.s(‘l‘ggé) ,0]=0.9474

This value is almost 1.0, it means that the final deflection will be closer to the cracked deflection
than to the uncracked one.

The final deflection with the aim of interpolation factor:
w,=(1-&)w,,+&w, ,=(1-0.9474)17.39+0.9474-26.37=25.90 mm

This deflection is even greater if we are considering the effect of shrinkage.
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The curvatures in uncracked and cracked states due to shrinkage:

E S (413—

K[ C‘S:gcs > S,I = 0.4 200 1272.3 (413 92’56.4-):5-517'1()_4i

: E., I, 1000 9.396 3.075-10 m
E S (413—

= et 04 290 12723413 197'3)=1.152~1o—3l

: E., I; 1000 9.396 2.028:10 m

The additional deflection due to shrinkage:

wkj_cszéLe;Km:%f-5.517-104=0.004414m=4.414 mm
WMCS:%LWZKH'CS:%ﬁ-1.152-10_3=0.OO9216m=9.216mm

The total deflection considering cracking and the effect of shrinkage:

wkcs: ( 1- C)(Wk.l +Wk.1.cs)+ g (Wk.II-l—Wk.II.cs):
=(1-0.9474)(17.39+4.414)+0.9474(26.37+9.216) =34.86 mm
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We modelled the beam with beam finite elements. In FEM-Design we increased the division
number of the beam finite elements to five to get the more accurate results.

Figure 7.2.3.2 — The cross section of the RC cantilever in FEM-Design

Fig. 7.2.3.2 shows the applied cross section and reinforcement with the defined input
parameters.

Figure 7.2.2.3 — The deflection [mm] of the RC bar model in FEM-Design with cracked section
analysis (without shrinkage [above], with shrinkage [below])

88
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Fig. 7.2.2.3 shows the deflection after the cracked section analysis. The deflection of the beam
model in FEM-Design:

Cracked section analysis without shrinkage: Wz, =24.32mm

Cracked section analysis with shrinkage: w, ., =31.50mm

The difference between the hand and FEM-Design calculations is around 9%, but keep in mind
that FEM-Design considers the interpolation factors individually in every finite elements one by
one to get a more accurate result.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/7.2.3 Cracked deflection of a
cantilever beam.str



http://download.strusoft.com/FEM-Design/inst170x/models/7.2.3%20Cracked%20deflection%20of%20a%20cantilever%20beam.str
http://download.strusoft.com/FEM-Design/inst170x/models/7.2.3%20Cracked%20deflection%20of%20a%20cantilever%20beam.str
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7.2.4 Cracked deflection of a cantilever beam with compressed reinforcement bars

Inputs:
Span length Lr=3m
The cross section b =200 mm; h =400 mm
The elastic modulus of concrete Eow=31.5 GPa, C25/30
The creep factor ¢s=2.0
Effective elastic modulus of concrete Ecetr = Een/(1+@25) = 10.5 GPa
Mean tensile strength fum = 2.6 MPa
Elastic modulus of steel bars E; =200 GPa
Characteristic value of the point moment at the end My =40 kNm
Diameter of the longitudinal reinforcement ¢ =12 mm
Diameter of the stirrup reinforcement ¢os =10 mm
Area of longitudinal reinforcement (tension) A= 4x12°n/4 = 452.4 m*
Area of longitudinal reinforcement (compression) Al =2x12°1/4 =226.2 m*
Nominal concrete cover Chom = 20 mm
Effective height (tension) d=h - Chom— ¢s— $/2 =364 mm
Effective height (compression) d' = cpom + ¢s+ /2 =36 mm
Shrinkage s = 0.4 %o

The cross sectional properties without calculation details:

I. stress stadium second moment of inertia I;= 1.409x10° mm*
I1. stress stadium second moment of inertia Ii= 6.563x10°mm*
L. stress stadium position of neutral axis x;=207.6 mm
II. stress stadium position of neutral axis xy = 128.0 mm

4412

ff

# # 2612

max

W)

Figure 7.2.4.1 — The cantilever RC beam with compressed RC bars
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The calculation of deflection according to EN 1992-1-1:

The load value for the quasi-permanent load combination (see Fig. 7.2.4.1):
M ,=40kNm

The maximum deflection with cross sectional properties in Stadium I. (uncracked):

1ML, 4032

1
) =0.01217m=12.17
I, 2 10500000-0.001409 m mm

w, =
“ 2 E ceff’

The maximum deflection with cross sectional properties in Stadium II. (cracked):

1ML,
Wi —E E

1 40-3
1, 210500000-0.0006563

=0.02612m=26.12 mm
ceff’

The maximum bending moment under the quasi-permanent load (see Fig. 7.2.4.1):
M, =M,=40kNm

The cracking moment with the mean tensile strength:

I
M =f. —1 =2600—290409__ 9 041Nm
h—x, 0.40—0.2076

The interpolation factor considering the mixture of cracked and uncracked behaviour:

M\ 2
g—max[lo.s(M o ) ,O]—max[10.5(194'(())4) ,0]=O.8867

The final deflection with the aim of interpolation factor:
w,=(1=&)w,,+&w,,,=(1—-0.8867)12.17+0.8867-26.12=24.54 mm

This deflection is even greater if we are considering the effect of shrinkage.

The curvatures in uncracked and cracked states due to shrinkage:

E, S (364— _ _

«, —p o Sur_ 0.4 200 452.4-(364—207.6) 2296.2(207.6 36):1'727_10,4L

: E.. I, 1000105 1.409-10 m
E, S (364 — _ _

o, —p Lr Sen_ 0.4 200 452.4-(364—128.0) 2286.2(128.0 36):9.979‘10_4i

: E.. 1, 100010.5 6.563-10 m

The additional deflection due to shrinkage:
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1, » 1

Wit =7 Loy K[,CS=532-1.727-10_4=O.0007772m=0.7772 mm
w,c,m%Le;:c,,,cs=%32~9.979' 107=0.004491 m=4.491 mm

The total deflection considering cracking and the effect of shrinkage:

Wk.cx: ( 1 - C)(Wk‘l +wk.[cs)+ C (Wk.II +Wk.II.cs):
=(1-0.8867)(12.17+0.7772)+0.8867(26.12+4.491)=28.61 mm

We modelled the beam with beam finite elements. In FEM-Design we increased the division
number of the beam finite elements to five to get the more accurate results.

Figure 7.2.4.2 — The cross section of the RC cantilever in FEM-Design

Fig. 7.2.42 shows the applied cross section and reinforcement with the defined input
parameters.
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\E\B\m

Figure 7.2.4.3 — The deflection [mm] of the RC bar model in FEM-Design with cracked section
analysis (without shrinkage [above], with shrinkage [below])

00

00

Fig. 7.2.4.3 shows the deflection after the cracked section analysis. The deflection of the beam
model in FEM-Design:

Cracked section analysis without shrinkage: Wz, =23.03 mm

Cracked section analysis with shrinkage: W, zz,=27.13mm

The difference between the hand and FEM-Design calculations is around 7%.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/7.2.4 Cracked deflection of a
cantilever beam with compressed reinforcement bars



http://download.strusoft.com/FEM-Design/inst170x/models/7.2.4%20Cracked%20deflection%20of%20a%20cantilever%20beam%20with%20compressed%20reinforcement%20bars
http://download.strusoft.com/FEM-Design/inst170x/models/7.2.4%20Cracked%20deflection%20of%20a%20cantilever%20beam%20with%20compressed%20reinforcement%20bars
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7.2.5 Cracked deflection of a cantilever with bending moment and normal forces

Inputs:
Span length Lx=2m
The cross section Rectangle: b =200 mm; h =400 mm
The elastic modulus of concrete Ewm=31.5GPa
The creep factor 025=2.0
Effective elastic modulus of concrete Ecetr = Een/(1+@25)=10.5 GPa
Ratio between the moduli o =Ey/Er= 19.05
Mean tensile strength fum = 2.2 MPa
Elastic modulus of steel bars E; =200 GPa
Diameter of the longitudinal reinforcement o1 =12 mm
Diameter of the stirrup reinforcement ¢0s =10 mm
Area of longitudinal reinforcement (top) A =4x12°1t/4 = 452.4 m?
Area of longitudinal reinforcement (bottom) A= 4x12°1/4 = 452.4 m?
Nominal concrete cover Chom = 20 mm
Effective height (bottom) d=h - coom— ¢s— ¢/2 =364 mm
Effective height (top) d'= Coomt G5t ¢/2 =36 mm
4412
M=50 kNm
3 :\/ =-500 +~ 500 kN
# = # 4912
Figure 7.2.5.1 — A RC cantilever with the applied loads

In this chapter we will calculate the deflection (vertical translation) of the end of a cantilever
(see Fig. 7.2.5.1). According to the behaviour of the reinforced concrete material this deflections
will depend on the amount of the applied normal force. At the free end of the cantilever we
applied a constant concentrated bending moment (M=50kNm) and we changed the intensity of
the applied concentrated normal force at the end from -500 kN compression to +500 kN tension.

The force is acting on the centroid of the uncracked RC section. Now it is in the middle.

During the hand calculation (and by the FEM-Design calculation as well) we considered
eccentricity caused by cracking in cracked section analysis.

We are going to calculate the compressed concrete zone by hand at five notable compressed
zone condition and based on these values the inhomogeneous inertias and areas are also can be
calculated. The deflections depend on these inertias. After these we calculate the interpolation
factors to get the accurate deflection considering the tension stiffening effect. At the end of this
chapter we compare the results with FEM-Design solutions.
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Case a)
M = 50 kNm; N= - 500 kN (compression):

In this case the complete section is uncracked, the total concrete zone is active.

Therefore we only need to calculate an inhomogeneous cross-section.

A,=b-h+a(A4,+4,')=200-400+19.05-(452.4+452.4)=0.09724m"

2 2

b-k h Nt
]a: 12 —‘,—aAl d_E +O{Al E_d =
3 2 2
:72001300 +19.05-452.4(364—42ﬂ +19.05-452.4(42ﬂ—36) =0.0015303m"

The stresses at the extreme fibres are as follows:

N Mh_ =50 5004
P4, 1,2 0.09724 0.0015303 2

a

N _ Mh_ =500 50 0.4 .
== - —2=—7.049MP
Thoton = "7 2 0.09724 00015303 2 @ (compression)

(o)

=1392MPa<f_ =2.2MPa (tension)

ctm

Based on these equation it is trivial that the first crack occur at the following normal force:

M h 50 0.4 :
Nc,ack—(fctm—l—az)Aa—(2200—m7 0.09724=—-421.5kN (COIl’lpI'GSSlOI‘l)

The deflection (vertical translation) of the free end of the cantilever:

ML Nk
w,= L= 20-2 =6.223 mm
2E,1, 2-10500000-0.0015303

Case b)
M = 50 kNm; N= - 200 kN (compression):

The compressed zone (measured from the compressed side) in this case comes from the solution
of a third order polynomial:

2
L ad(d=x,)(d-h12)+a A,v(xb—dv)<h/z—dv)+”2ﬁ(h/2_%xb)
M B}
N bxlf
ad)(d=x,)=a 4 (x,~d")-—*

The relevant solution of this equation:

x,=199.7mm
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Based on this, the position of the centroid measured from the compressed side:
x2
b?b+aA,d +ad,'d'

= =130.0
Ysb bx,+a (A,+A,') mm

According to this the cracked section area and inertia:

Ay=bx,+ o4+ 4,')=200-199.7+19.05-(452.4+452.4)=0.05718 m’

_b-xi
12

I, +bx,(xg—x,/2) +a A [d —xg) +a 4, x5—d'['=0.0007171 m"

The deflection (vertical translation) of the free end of the cantilever with this cracked condition
considering the decreased moment at the cracked centroid from the additional eccentricities
(because the original loads are acting on the centroid of the uncracked RC section):

(M +N(h12=xg)) Ly _(50—200(0.2—0.130))-2*
2E, 1, 2-10500000-0.0007171

=9.562 mm

W=

But this is not the final deflection, because we need to consider the tension stiffening to get a
more comparable result.

The stress in the tension reinforcement calculated on the basis of a cracked section and the
additional moment due to cracked eccentricity:

N M+N(hl2—x) B
Ab+ I, (d be) =

o,=a

:19'05[ —200 +50—200(0.2—0.130)<

0.364—0.130)|=157.2 MP
0.05718 0.0007171 )] :

The load conditions causing first crack:

UM

N M —200 50
L (h2)|= + 0.4/2)|=f.,=2.2MPa ;thus 7,=0.4913
1T )] 77blo.09724 0.0015303 )] S em & sthus m,

a

Thus the normal force:
7, N=0.4913-(—200)=—98.26kN (compression)

And the bending moment:
n,M =0.4913-50=24.57 kNm
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The stress in the tension reinforcement calculated on the basis of a cracked section under the
loading conditions causing first cracking considering the additional moment due to cracked
eccentricity:

N n,M+n,N(hi2—
Osrb: nj{ +nb nb I( XSb)(d_'be)]:
b b
—98.26 24.57—98.26(0.2—0.130)
=19.05 + 0.364—0.130)|=77.24 MP
l0.05718 0.0007171 ( )l :

The interpolation factor considering the mixture of cracked and uncracked behaviour:

2 2
;b:maxll_o,s(f';r:) ,O]zmaxll—O.S(M) ,0]20.8792

157.2

The final deflection with the aim of interpolation factor:
w,=(1-¢&,)w,+&,w,,=(1-0.8792)6.223+0.8792:9.562=9.159 mm

Case ¢)
M = 50 kNm; N= 0 kN (pure bending):

In this case the cross section is under pure bending. In this situation the following equation gives
the position of the compressed zone (cracking occur on the tension side).
1

Exbera(xc—d')A,'Jra(xc—d)A,=0

The relevant solution of this equation:

x.,=118.5mm

Based on this value the cracked cross-sectional area and inertia:

A, =b-x,+a(A4+4,')=200-118.51+19.05-(452.4+452.4)=0.04094 m’

3

1 :b.xc—ka A,(d—xc)2+aAl'(xc—d')2=

<3
_200-118.5°
3

+19.05-452.4(364—118.5)"+19.05-452.4(118.5—36] =0.000689 m*

The deflection (vertical translation) of the free end of the cantilever with this cracked condition:

_ MLy 50-2°
2E., 1, 2:10500000-0.000689

Wen =13.82 mm




Verification Examples FEM-Design 18

But this is not the final deflection, we need to consider the tension stiffening to get a more
comparable solutions. The interpolation factor based on the pure bending condition:

The cracking moment with the mean tensile strength:

I
@ _ 990000915303 _ ¢ er keNm

“"hl2 0.4/2

The interpolation factor considering the mixture of cracked and uncracked behaviour:

M, \ 16.83 |’
§.=max|1-0.5 A/[" ,0 [=max 1—0.5(5—'0) ,0(=0.9434

Mcr:f

The final deflection with the aim of interpolation factor:
w,=(1-&,)w,+&, w,,;=(1—0.9434)6.223+0.9434-13.82=13.39mm

Case d)
M = 50 kNm: N= 200 kN (tension):

The compressed zone (measured from the compressed side) in this case comes from the solution
of a third order polynomial:

2
aA,(d—xd)(d—h/2)+aA,'(xd—d')(h/2—d')+b—;d(h/2—%xd)

_ =0

b 2
aAfd=x,)=ad) (x,~d") ="

N

The relevant solution of this equation:

x,=58.38mm

Based on this the position of the centroid measured from the compressed side:
x2
b7d+aAld +a d,'d'

= =131.0
s bxd+a(A,+Al') mm

According to this the cracked section area and inertia:

Ay=bx,+o(A4,+4,')=200-58.38+19.05-(452.4+452.4)=0.02891 m’

3
_ b'xd

L= by (xg=x, 2) v e d)[d —x | + e 4)'(x5,~d'[=0.0006700 m*




Verification Examples FEM-Design 18

The deflection (vertical translation) of the free end of the cantilever with this cracked condition
considering the increased moment at the cracked centroid from the additional eccentricities
(because the original loads are acting on the centroid of the uncracked RC section):

y _(M+N(h2-xg)) Ly _(50+200(0.2—0.131))-2°
i 2E, 1, 2-10500000-0.00067

=18.14mm

But this is not the final deflection, we need to consider the tension stiffening to get a more
comparable solution.

The stress in the tension reinforcement calculated on the basis of a cracked section and the
additional moment due to cracked eccentricity:

M+N(hl2—
£+ ( XSd)( _de>]
A4, 1,

o,=a

200 +50+2oo(o.2—o.131)<
0.02891 0.00067

:19.05[ 0.364—0.131)]=554.5 MPa

The load conditions causing first crack:

N M 200 50
S+ (nl2)|= +
7 )] 7740.09724 0.0015303

(0.4/2)]: fum=22MPa ;thus 17,=0.2560

Na

A

a a

Thus the normal force:
17, N=0.2560-200=51.2kN kNm

And the bending moment:
n,M =0.2560-50=12.80 kNm

The stress in the tension reinforcement calculated on the basis of a cracked section under the
loading conditions causing first cracking considering the additional moment due to cracked
eccentricity:

N u,M+n,N(hi2—
Ogu= 77;11 +nd Ta 7 ( atl) (d_de)]:
d d
512 12.8451.2(0.2—0.131)
=19.05 + 0.364—0.131)|=141.9MP
l0.02891 0.00067 ( )] :

The interpolation factor considering the mixture of cracked and uncracked behaviour:

2 2
gd:maxll_oj(gv;) ,Ol:max[l—O.S(w) ,0]=0.9673

554.5
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The final deflection with the aim of interpolation factor:
w,=(1-&,)w,+&,w,=(1-0.9673)6.223+0.9673-18.14=17.75 mm

Casee)

M = 50 kNm: N= 500 kN (tension):

In this case the cross section is fully cracked (therefore this is only a theoretical solution). The
whole concrete zone is cracked. Practically in means that only the reinforcement bars are active
in the section, thus the cross-sectional properties:

A,=a(A4+4,')=19.05-(452.44+452.4)=0.01724 m’

I=adld—hl2+a 4 (hl2—d'|'=
=19.05-452.4(364—200)"+19.05-452.4(200— 36)°=0.0004636 m*

The deflection (vertical translation) of the free end of the cantilever with this fully cracked
condition (only the RC bars are working):
MLy 50.22

_ _ =20.54
Wenr=3E._ I, 2-10500000-0.0004636 mm

But this is not the final deflection, we need to consider the tension stiffening to get a more
comparable solution.

The stress in the tension reinforcement calculated on the basis of a cracked section:

N M 500 + 50

7+T<d_h/2)]:1905[0.01724 0.0004636

e e

o =

se

(0.364—0.2)]:889.4Ml>a

The load conditions causing first crack:

n.

N M 500 50
N (h2)|= + 0.4/2)|=f.,,=22MPa ;thus 1,=0.4279
R )] 778[0.09724 0.0015303 )] S em @ thus

a a

Thus the normal force:
n,N=0.4279-500=214.0kN

And the bending moment:
n,M=0.4279-50=21.40 kNm

The stress in the tension reinforcement calculated on the basis of a cracked section under the
loading conditions causing first cracking:
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nN nM<

nN  nM d—h/2)]=19.05l 2140 | 2140

0.01724  0.0004636

o . =a

sre

364—0.2)|=380.7 MP
y 7 (0.364—0.2)|=380.7MPa

e e

The interpolation factor considering the mixture of cracked and uncracked behaviour:

2 2
ée:maxll—O.S(ngM) ,O‘lzmaxll—().s (M) 0

=0.9084
e 889.4

The final deflection with the aim of interpolation factor:
w,=(1-¢,)w,+&,w,,=(1—0.9084)6.223+0.9084-20.54=19.23 mm

Figure 7.2.5.2 — A RC cantilever with the applied loads in FEM-Design

Fig. 7.2.5.2 shows the FEM-Design model with bars. Fig. 7.2.5.3 shows the deflections (vertical
translations) of the free end of cantilever under the constant bending moment regarding different
normal forces (compression and tension as well). In Fig. 7.2.5.3 in addition to the hand
calculation we indicated the FEM-Design results with beam model and with shell model also.

The differences between the hand and FEM-Design calculations are less than 5%, thus we can
say that the results are identical to each other.
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Cracked deflection under bending and normal force

800 j
Fully cracked

600 concrete zone

400

Pure bending
200 case c)

Normal force [kN]
o

5 7 17 19 21
-200
-400 Shell modell
-600 Fully active Beammodell
concrete zone * Hand calculation
case a)
-800

Deflection (vertical translation) [mm]

Figure 7.2.5.3 — A results with FEM-Design (beam and shell also) compared to the hand calculation

NOTE: The cracked section analysis in FEM-Design is based on a non-linear calculation but
only accurate by SLS combinations because the used material model for the reinforcement is
linear (both compression and tension) and for the concrete is a non-tension material (only
compression, assumed to be linear) if the extreme fibres reached the mean tensile strength in the
cross-section.

Download link to the example files:

Beam model:

http://download.strusoft.com/FEM-Design/inst1 70x/models/7.2.5 Cracked deflection of a
cantilever with bending moment and different normal forces.beam.str
Shell model:

http://download.strusoft.com/FEM-Design/inst1 70x/models/7.2.5 Cracked deflection of a
cantilever with bending moment and different normal forces.shell.str
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http://download.strusoft.com/FEM-Design/inst170x/models/7.2.5%20Cracked%20deflection%20of%20a%20cantilever%20with%20bending%20moment%20and%20different%20normal%20forces.shell.str
http://download.strusoft.com/FEM-Design/inst170x/models/7.2.5%20Cracked%20deflection%20of%20a%20cantilever%20with%20bending%20moment%20and%20different%20normal%20forces.shell.str
http://download.strusoft.com/FEM-Design/inst170x/models/7.2.5%20Cracked%20deflection%20of%20a%20cantilever%20with%20bending%20moment%20and%20different%20normal%20forces.beam.str
http://download.strusoft.com/FEM-Design/inst170x/models/7.2.5%20Cracked%20deflection%20of%20a%20cantilever%20with%20bending%20moment%20and%20different%20normal%20forces.beam.str
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7.2.6 Cracked deflection of a simply supported square slab

Inputs:
Span length Ler= 6 m (Fig. 6.2.3.1)
The thickness h =200 mm
The elastic modulus of concrete Ecn = 30 GPa, C20/25
The Poisson's ratio of concrete v=0.2
The creep factor @2 =2.35

Effective elastic modulus of concrete

Eceff = Ecm/(1+(P28) = 896 GPa

Mean tensile strength

fom = 2.2 MPa

Elastic modulus of steel bars E; =200 GPa
Characteristic value of dead load g =6 kN/m
Characteristic value of live load gk = 10 kN/m
Live load combination factor v, =0.6

Diameter of the longitudinal reinforcement

¢ = 10 mm/200 mm

The specific reinforcement

A= 0.393 mm?*mm

Nominal concrete cover

¢x = 30 mm; ¢, = 40 mm

Average effective height

d=160 mm

The ratio of the elastic modulus

s = Ey/Ecer=22.32

Figure 7.2.6.1 — Simply supported RC slab with constant total distributed load

The load value for the quasi-permanent load combination:

kN
pqp:gk+1/J2qk:6+ 0.6-10:12_2
m
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| —>y' |
= hd hd hd bl # =30 mm
1 @10/200=393 mm?*/m :

| X' |
- - - - ! § c=40 mm
@10/200=393 mm*/m ‘

Figure 7.2.6.2 — The reinforcement in the slab

The deflection of an isotropic simly supported square slab under uniform load (see Chapter 1.3):

4
W =0.00416 —L=
Eh

12(1-v?)

The uncracked unreinforced specific inertia (only with the concrete):

3 3 4 4
[=2 200 ¢ 667.10° ™™ _0 0006667
12 12 mm m

The deflection based on this inertia:

4
W —0.00416 12-6 —0.01040m =10.4mm
: 8960000-0.0006667

1-0.2°

The uncracked reinforced specific inertia (Stadium L.):

2 2
h—+asasd 200", 55 32-0.393-160
xX,= 2 = 2 =102.52mm
" hta.a, 200+22.32-0.393 '
3 3
h 3 —102.52)
1,=%’+( 3x’) ta.a(d—x, = 1023'52 41200 202 52) +22.32:0.393(160—102.52?
mm4 1’1’14
1,=6.969-10°——=0.0006969 —
mm m
The deflection based on this inertia:
12-6*
W 1=0.00416 =0.009947 m =9.947 mm
8960000-0.0006969
1-0.2°
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The cracked reinforced specific inertia (Stadium II.):
2 2

%msasd %+22.32-0.393-160
= - —44.93
AL x,+22.32-0.393 Xu mm
3 3 4
1,,=%+asas(d—x,,)2=@ +22.32:0.393(160—44.93 )= 1.4638-105%

The deflection based on this inertia:

4
W 1 =0.00416 12:6 —0.04735m=47.35 mm
8960000-0.00014638
1-0.2°
The cracking moment:
1, 6.969-10° Nmm kNm
= =22 =15730——=15.73 ——
Mo =Tan = =22 200 102.52 mm m

m,  =0.0469 pa2=0.0469-12-62=20.26kNTm

The interpolation factor considering the mixture of cracked and uncracked behaviour:

2 2
§=max[1o.5( Moy ) ,0]=max[10.5(@) ,O]=0.6986

20.26

max

The deflection based on this interpolation factor:
=(1=&) W, ;+EW e 1 =(1—0.6986)9.947+0.6986-47.35=36.08 mm

max,cr max , 11—

Figure 7.2.6.3 — The FE model
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Figure 7.2.6.4 — The finite element mesh [average element size: 0.2 m]

il
| \R H‘\\

/,,jl/” lLUJl}I[[[\ Il & e N ;f
, ,,L«M N | P gy, )
r\ i rany A
it § HJ L ,»\;FVJ ,I»-")V
Q[If[f[ T ) } ;U - [ e J/J g
\‘L‘Uﬂii;iﬂm /’1\ 1 h

T
~Trr Kxﬂ:ﬂjﬂ*" o |

Figure 7.2.6.5 — The reactions [KN/m] without reinforcement and with reinforced cracked section analysis
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-1.74 -3.08

Figure 7.2.6.6 — The m, [KNm/m] without reinforcement and with reinforced cracked section analysis
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. ) i .

Figure 7.2.6.7 — The m, [KNm/m] without reinforcement and with reinforced cracked section analysis

Figure 7.2.6.8 — The m,, [KNm/m] without reinforcement and with reinforced cracked section analysis

74 -3
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Figure 7.2.6.9 — The deflection [mm] without reinforcement and with reinforced cracked section analysis

This hand calculation method is very very conservative, thus do not considering the realistic
crack pattern and the torsional effects. In addition the shear deformations in the slab is also
neglected.

Fig. 7.2.6.9 shows the deflection based on FEM-Design. Here the difference between the
deflections is quite large but this comes from the mentioned very very conservative hand
calculation method.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/7.2.3 Cracked deflection of a
simply supported square slab.str
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7.3 Nonlinear soil calculation

This chapter goes beyond the scope of this document, therefore additional informations are
located in:

FEM-Design — Geotechnical modul in 3D, Theoretical background and verification and
validation handbook

http://download.strusoft.com/FEM-Design/inst170x/documents//3dsoilmanual.pdf
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7.4 Elasto-plastic calculations

7.4.1 Elasto-plastic point support in a beam

Inputs:
Span length L=6m
Distributed load q =90 kN/m
Structural steel S235, f, =235 MPa
Young's modulus of steel E =210 GPa
Shear modulus G =180.77 GPa
Cross section IPE 400
Cross-sectional area A = 8446 mm’
The first principal inertia I,=231283781 mm*
The shear correction factor in the relevant direction p2=0.4
The elastic cross sectional modulus We = 1156419 mm’
The first moment of the half of the cross sectional area Sp = 653575 mm’
about the centroid
Plastic load-bearing moment capacity of the section M, = 2S,f; = 307.2 kNm
q=90 kN/m

§u A\ A \ A A u

3 s

. L=6m P

7.4.1.1 — The beam with a fixed support and a roller

The problem is a beam with fixed end on the left side and a roller on the right side (see Fig.
7.4.1.1). The input parameters are in the table above. First of all we calculate the deflection and
the internal forces according to the external total distributed load based on linear elastic theory
(Case 1). For the second calculation we assume that the fixed support can only bear maximum
M, bending moment (Case 2). Thus we assume a plastic hinge after a certain amount of load
level when the beam reaches this plastic limit moment in the fixed support.

Based on the plastic hinge the distribution of the internal forces and the deflection will be
different from the linear elastic calculation.

At the hand calculation we neglect the shear deformation (Euler-Bernoulli beam theory) to get a
simple solution for this problem. In FEM-Design the applied beam theory considers the shear
deformation (Timoshenko beam theory). It means that when we compare the solution of the
hand calculation to the finite element solution the deflection will be a bit larger in case of the
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FEM calculation. To avoid this difference in the FEM analysis of the beam then the cross-
sectional area must be rewritten with a large number (e.g.: A = 10°m?). Practically it means that
the shear stiffness is almost infinite. In this case the solutions will be the same than the results of
the hand calculations. At the end of this example we will show two finite element results. One of
them will neglect and the other will consider the shear deformation.

Case 1:

The characteristic shear forces, bending moments, rotations and translations are indicated in Fig.
7.4.1.3 left side according to linear elastic calculation. Here are some hand calculation results
without further details based on the classical theory of elasticity:

2 2
V=34 L=390:6=3375kN 5 M, =LE-=20C _gp5iNm

8 max ~— 8 8
3 3
__qL” _ 90-6 —0.008339
roller — - -V rad
P o 483E1, 48-210-10°0.000231283781
4 4
e 2 gL _ 2 90-6 12.51 mm

marn 384 E 1, 384 210-10%0.000231283781

Case 2:

To easily consider the bending moment limit (plastic analysis) at the fixed support the following
simplification need to be declared at the hand calculation. Until the certain amount of load level
(g:) which causes M, bending moment at the fixed support the behaviour is linear elastic:

M;:Mp,=q’8L2=3o7.2kNm == qugjfz”l=68.27kN/m
q,=68.27 kN/m
PN 11T TIITTTY

+
¥ YVYVY) ) - q,=21.73 kN/m
Y VYVVYVVYVYVYVYVYVYY
P

7.4.1.2 — The beam behaviour with the plastic bending moment limit at the fixed end

After this load level the fixed end will be a plastic hinge therefore the statical system differs
from the original one (see Fig. 7.4.1.2). The rest of the load level which will act on a simply
supported beam (according to the plastic hinge):

q,=q—q,=90—68.27=21.73kN/m
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With this assumption we can superpose the two different results based on the two different

statical systems. The specific shear forces, bending moments, rotations and translations are as

follows without furher details (Fig. 7.4.1.3 right side):

me:%qlL+%q2L=§68.27-6+%21.73-6=321.2kN
M, =M, = q18L2 - 68'287'62= 307.2kNm
i 4ZIEL}11 ZZZEL;] :(6%7 " 21213 )[210- 106-0.0?)30231283781 ]:0'010352 rad
P pibinge = ZZZEL ; . 21223) 210-106-0.0(6);231283781 120'004027rad
@ midpn= 3§4 gﬁj " 324 qbf[;j B 2.3624'127 i 5?;473 )[210- 106-0.021)231283781 ]Z 17.04 mm

Figure 7.4.1.3 left side shows the linear elastic and right side shows the plastic results.
218.8

202.5
/m V)]

/m o
e =

321.2

307.2

405
MW@ [kNm] Im\ [ ‘ @ [kNm]
266.0

227.8
\ @[rad] \J@[rad]
0.010352

0.008339

12.51
17.04

7.4.1.3 — The internal forces, the rotations and translations in the beam according to linear
elastic (left) and plastic calculation (right) by hand

mm]

Figure 7.4.1.4 shows the FEM-Design model with the input data.
Figure 7.4.1.5 shows the FEM-Design results without shear deformation (A = 10°mm?). The left

side shows the linear elastic calculation and the right side shows the plastic analysis.
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We can say that the results are identical with the hand calculations.
| S VY VYV VYV VYV VYV VYV VTV
Y
7.4.1.4 — The model with the input data in FEM-Design
Tz' [kN] T2' [kN]
400 -400
-300 -300
-200 -200
o m tmp m Im]
2 x
100 | o 100 2
[=) o
200 N 200 f
300 300
400 400
My' [kNm] My' [kNm]
-500 -400
-375 -300
-250 -200 -
-125 l I[m] -100 § I[m]
Lt N
(=)
o™ ‘
250 200
375 300
500 400
fiy' [rad] ﬁﬁy' [rad]
0.00900 0.0110 ‘
0.00675 (<)) 0.0083 o
1] ‘ L
0.00450 D 0.0055 3
0.00225 ‘ 8 0.0027 S
' ‘ clm] ™ S Im]
-0.00225 -0.0027 }
-0.00450 -0.0055 > ‘
-0.00675 -0.0083
-0.00900 -0.0110 ‘
ez' [mm] ez' [mm]
14.0 18.0
10.5 135
7.0 9.0 23
* o m ES Irm]
-3.5 -4.5
-7.0 -9.0
-10.5 -13.5
-14.0 -18.0
7.4.1.4 — The internal forces, the rotations and translations in the beam according to linear elastic (left) and
plastic limit calculation (right) with FEM-Design without shear deformation (A=10°mm?®)
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Figure 7.4.1.5 shows the FEM-Design results with shear deformation (A = 8446 mm?). The left
side shows the linear elastic calculation and the right side shows the plastic analysis.

In this case the result differs a bit from the hand calculations according to the shear deformation
(Timoshenko beam theory).
T2' [kN] T2' [kN]

-400
-300

|
-200 ‘ -200
% m m m Irm)

100 W
300

-218.8

g8s
203.5
g

400 400
My' [kNm] My' [kNm]
-400 -400
-300 -300
-200 -200
-
-100 -100 wn
I[m] © Ifm]
A ‘ r:! ’
100 & 100 55
oM
200 200
300 300
400 400
fiy' [rad] fiy' [rad]
0.00900 0.0110
0.00675 g 0.0083 e
0.00450 > 0.0055 8
0.00225 8 0.0027 | b=y
) o I[m] ‘ ‘ o Im]
-0.00225 -0.0027
-0.00450 -0.0055
-0.00675 -0.0083
-0.00900 -0.0110 ’
ez' [mm] ez' [mm]
15.0 19.0
11.3 14.2
7.5 N 9.5 8%
3 2%
38 85 4.8 am
A I[m] L I[m]
-3.8 -4.8
7.5 9.5
-11.3 -14.2
-15.0 -19.0

7.4.1.5 — The internal forces, the rotations and translations in the beam according to linear elastic (left) and
plastic limit calculation (right) with FEM-Design with shear deformation (A=8446 mnr’)

Download links to the example files:

Without shear deformation:

http://download.strusoft.com/FEM-Design/inst170x/models/7.4.1 Elasto-plastic point supports
in a beam_without shear def.str

With shear deformation:

http://download.strusoft.com/FEM-Design/inst170x/models/7.4.1 Elasto-plastic point supports
in a beam_with_shear def.str
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http://download.strusoft.com/FEM-Design/inst170x/models/7.4.1%20Elasto-plastic%20point%20supports%20in%20a%20beam_with_shear%20def.str
http://download.strusoft.com/FEM-Design/inst170x/models/7.4.1%20Elasto-plastic%20point%20supports%20in%20a%20beam_with_shear%20def.str
http://download.strusoft.com/FEM-Design/inst170x/models/7.4.1%20Elasto-plastic%20point%20supports%20in%20a%20beam_without_shear%20def.str
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7.4.2 Elasto-plastic line support in a plate

Inputs:
Dimensions of the slab Lyi=4m;L,=8m
Distributed load q. = 10 kN/m?
Concrete slab C 30/37
Young's modulus of concrete E =33 GPa
Poisson's ratio v=0.2
Thickness t=200 mm
Line support my = my, =30 kKNm/m (around line)

The problem is a concrete slab with a fixed support on its edge and with a total distributed load
(see Fig. 7.4.2.1).

7.4.2.1 — A concrete slab with a fixed support on its edge

Case 1:

In this case we assume that the line support has a plastic limit moment capacity (m,, around
the edge) along the whole support (blue and red line equally, see Fig. 7.4.2.1). The slab behaves
similarly as a cantilever beam. If the plastic limit moment capacity is valid along the whole line
support the load bearing capacity can be assumed with the help of the following equation:

2

q: Lx

m This is the approximated specific moment value at the fixed end.

Pl

It means that the maximum of the total distributed load which the structure can bear is:

2 .
ng’l = 24320 ~3.75kN /m”

X

q,=
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Thus if we apply ¢. = 10 kN/m?load on the slab there is no equilibrium on this final load level.
The last converged load level must be around:

4375 _ 37523759
q. 10

We modelled this case in FEM-Design. Let's see the results based on the finite element analysis.

Fig. 7.4.2.2 shows the model with the adjusted parameters.

7.4.2.2 — The concrete slab with a fixed support on its edge in FEM-Design (Case 1)

After the elasto-plastic analysis the last converged load level based on the program is 37% (see
Fig. 7.4.2.3). Fig. 7.4.2.3 also shows the reactions. We can see that the reaction moment around

the line support is a constant 30.00 kNm/m which is the expected value according to the
adjusted limit moment value (m,; = m,= 30 kNm/m).

Thus we can say that the program gives the same solution as the hand calculation.
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no.t2
iibrim) load level: 37 %

7.4.2.3 — Last converged load level 37%, the deflection [mm)] and the reactions by this
load level

Case 2:

In this case we assume that the line support has a plastic limit moment capacity (m,;, around
the edge) along the red part (see Fig. 7.4.2.1). The blue parts behave in a linear elastic way.
In this case the slab behaves also as a cantilever beam. The slab behaves linearly until load level
¢:=3.75 kN/m’. Above this load level there will be a plastic hinge line along the red part of the
fixed support (see Fig. 7.4.2.1). This remaining load is:

¢,=q.—q,=10—3.75=6.25kN/m"’

Since the sum of the length of the blue parts is equal to the length of the red one (see Fig.
7.4.2.1) we can estimate that (as a conservative assumtion) the remaining load level is
redistributing on the blue linear elastic fixed supports. To assume the maximum deflection of the
slab first of all we need to calculate the deflection according to ¢;=3.75 kN/m? (linear elastic
behaviour):

The approximated bending stiffness of the slab:

3 6 3 2
Et : _33:10 0.22 29917 KNm
12(1-=v*) 12(1-0.2%) m

D, =

Based on this value the deflection (as a cantilever):

_q,L' 3754

NI =536
©178D, 822917 mm
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Since the remaining part of the load is redistributing to the blue (linear elastic) parts of the
support we can assume that the remaining middle part of the distributed total load acts on the
outer part. Therefore the remaining distributed load which has affect on the linear elastic parts of
the line support:

4, =2¢,=2-6.25=12.5kN/m’
Because the length of the red part equals to blue ones.

According to this load the deflection of the slab after the linear elastic behaviour can be assumed
as:

4

¢ L. 1254

~ = =17.454
“778D, 822917 i

Thus the approximation of the total deflection with elasto-plastic calculation is:

€, =€,1te,=5236+17.454=22.69mm This is a very conservative result.

pl tot

We modelled this case in FEM-Design. Let's see the results based on the finite element analysis.

Fig. 7.4.2.4 shows the model with the adjusted parameters.

7.4.2.4 — The concrete slab with a fixed support on its edge in FEM-Design (Case 2)

After the elasto-plastic analysis the last converged load level based on the program is 100% (see
Fig. 7.4.2.5). Fig. 7.4.2.5 also shows the reactions. We can see that the reaction moment around
the line support of the middle part is a constant 30.00 kNm/m which is the expected value
according to the adjusted limit moment value (m,, = my= 30 kNm/m). The remaining part of the
line support behaves linearly as expected. At the end of the linear behaviour (load level 37%)
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the deflection is 5.74 mm (see Fig. 7.4.2.3). The difference between the FEM-Design and hand
calculation is less than 10% (5.74 mm vs. 5.236 mm). This difference comes from the very
conservative hand calculation formula and from the fact that FEM-Design considers the shear
deformations (Mindlin plate theory).

At load level 100% the deflection is 19.36 mm (see Fig. 7.4.2.5). The results based on the hand
calculation was 22.69 mm. The difference is around 15%. This difference comes from the very
conservative hand calculation formula and from the fact that FEM-Design considers the shear
deformations (Mindlin plate theory).

Thus we can say that the program gives an accurate elasto-plastic solution.

Load level: 100 %, iteration no.: 1
Last converged (equilbrium) load level: 100 %

7.4.2.5 — Last converged load level 100%, the deflection [mm] and the reactions [kKN/m,
kNm/m] by this load level

Download link to the example files:
Case 1:

http://download.strusoft.com/FEM-Design/inst1 70x/models/7.4.2 Elasto-plastic line supports in
a plate casel.str

Case 2:

http://download.strusoft.com/FEM-Design/inst1 70x/models/7.4.2 Elasto-plastic line supports in
a plate case2.str
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7.4.3 Elasto-plastic surface support with detach in an embedded plate
In this example the structure is an embedded rectangle plate (a=6m, b=4m). The plate is
assumed to be infinitely rigid. There are three different load positions of compression point load
(N=3000 kN, see Fig. 7.4.3.1). The behaviour of the bedding of the plate will be considered in
three different ways (see Fig. 7.4.3.2).
The table below shows the nine analyzed cases:
No Eccentricity of the compression point load Behaviour of the
) (N =3000 kN) bedding
1 in y direction, e,=1 m linear elastic
2 in x direction, e,=2 m linear elastic
3 in y direction, e,=1 m and in x direction, e,=2 m linear elastic
4 in y direction, e,=1 m linear elastic, non-tension
5 in X direction, ¢,=2 m linear elastic, non-tension
6 in y direction, e,=1 m and in x direction, e,=2 m linear elastic, non-tension
7 in y direction, e,2=1 m elasto-plastic, non-tension
8 in X direction, ¢,=2 m elasto-plastic, non-tension
9 in y direction, e,=1 m and in x direction, e,=2 m elasto-plastic, non-tension
A A A
N
£ E . N £ N £ E °
‘”" I > ‘H’ . - ‘”" I >
© o” X © A X © R S
e =2m e=2m
¥ a=6m v ¥ a=6m ¥ v a=6m ¥
7.4.3.1 — Dimensions of the embedded plate and the positions of the compression point load on it

f f f

K

tension o tension tension

1
compression d compression 7
K

7.4.3.2 — The material behaviour of the bedding of the plate (K= 10°kN/m/m?, fiim comp=200 kPa)

_E—

ay¥

compression
K

Ly

f;im, comp
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Case 1):

In this case the behaviour of the bedding is linear elastic therefore the reaction forces can be
calculated according to the superposition of pure compression and uniaxial bending:

N, M. 3000 3000

(1)
=— 4 —Zy = 2= 2=+62.5kP
T =TT YT T Ty 4
m_ N M, 3000 3000
W= = 20— 312.5kP
amm A Ix ymm 24 32 a
Case 2):

In this case the behaviour of the bedding is linear elastic therefore the reaction forces can be
calculated according to the superposition of pure compression and uniaxial bending:

o N M, 3000 , 6000

O s A Iy Y max 24 72 .
M

o @ N _M, 3000 6000, ;.55

" A I, ™ 24 72

Case 3):

In this case the behaviour of the bedding is linear elastic therefore the reaction forces can be
calculated according to the superposition of pure compression and biaxial bending:

3. N M, M, 3000 = 3000 . 6000
SR T mpu + 2+ 3=+312.5kP
Vs Ty Yem oy e o gy T a
3. N M, M, 3000 3000 . 6000
B _ 4y == — 2— 3=—562.5kP
@ i AL, T T T T 72 a

The specific results of the hand calculation can be seen in Fig. 7.4.3.3.

A A '™

-187.5

-187.5

. N=3000 kN

N:3000.kN

N=3000 kN

B

+187.5

+187.5

-125

7.4.3.3 — The distribution of the reaction forces [kPa] of the linear elastic cases

122



Verification Examples FEM-Design 18

Case 4):

In this case the behaviour of the bedding is linear elastic, non-tension therefore the reaction
forces can be calculated according to the theory of the stress volume. The amount of the
resultant and the centroid of the linear stress volume must be equal to the acting point load:

63 (m__2N _ 23000 _

(1)
N— o . o . = = = 3333kP

Case 5):

In this case the behaviour of the bedding is linear elastic, non-tension therefore the reaction
forces can be calculated according to the theory of the stress volume. The amount of the
resultant and the centroid of the linear stress volume must be equal to the acting point load:

4-3 (2) 2_ 2N _ 2-3000 _

N=—"Z¢5 A2 = —_
5O min O, 13 13 500 kPa

Case 6):

In this case the behaviour of the bedding is linear elastic, non-tension therefore the reaction
forces can be calculated according to the theory of the stress volume. The amount of the
resultant and the centroid of the linear stress volume must be equal to the acting point load:

— 2
N:Mlommm 5 OO :_6‘31%00 —_1125kPa

2 3 4*

The specific results of the hand calculation can be seen in Fig. 7.4.3.4.

A A A

s ; N:300(;}N
N=3000 kN
R N ® ,»t“
N=3000 kN %
N ! ® R Q
X | 2'm AVI m % -

V4

v

I'm” Lim 1 m
Y

-500

7.4.3.4 — The distribution of the reaction forces [kPa] of the linear elastic, non-tension cases
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In Case 7-9 the bahaviours are elasto-plastic, non-tension thus it means that according to the
given fiimcompy=200 kPa limit force (see Fig. 7.4.3.2) there are different values of the load-bearing
capacity due to the positions of the point load.

Case 7):

In this case the behaviour of the bedding is elasto-plastic, non-tension therefore the reaction
forces can be calculated according to the theory of the stress volume. The amount of the
resultant and the centroid of the constant stress volume (with fiim,comy=200 kPa) must be equal to
the acting point load:

(1_ Nlimit(l) _ 2400

= Y
N 3000 80%

N =62+ F 1 comy=6:2-200=2400kN 77

Case 8):

In this case the behaviour of the bedding is elasto-plastic, non-tension therefore the reaction
forces can be calculated according to the theory of the stress volume. The amount of the
resultant and the centroid of the constant stress volume (wWith fiim,comp=200 kPa) must be equal to
the acting point load:

2 Nuwi”_ 1600

Nlimit(2)24.2'flim,comp:4.2.200:1600 kN 77 ZT m=533 %

Case 9):

In this case the behaviour of the bedding is elasto-plastic, non-tension therefore the reaction
forces can be calculated according to the theory of the stress volume. The amount of the
resultant and the centroid of the constant stress volume (With fiim,comp=200 kPa) must be equal to

the acting point load:
V2
2 (3)
3 ) Nima 900

lﬁ R
2
Nlimit(3): 2 'flim,comp:7'200:900 kN 7’] =T_m=30%

2

V2+

The specific results of the hand calculation can be seen in Fig. 7.4.3.5.

=200

NS =l e

-
X

AY AY AY

xv

7.4.3.5 — The distribution of the reaction forces [kPa] of the elasto-plastic, non-tension cases
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In the second part of this chapter we make a FEM-Design model for the problem and compare
the results with the hand calculation. Fig. 7.4.3.6 shows the main input properties of the model
(concrete slab with 2 m thickness). In FEM-Design the reaction result of a surface support
element is the average value. For more precise results the average element (mesh) size was 0.2
m.

By the calculation of the surface support reactions we exrapolated the element average FEM-
Design numeric values to the extreme fibre (edge of the plate) to get more comparable results.

You can find below one by one the 9 different cases and their results based on FEM-Design.

7.4.3.6 — The FEM-Design modell (plate with surface support) with the input data and the different position of
the point loads and the finite element mesh

Case 1) FEM (see Fig. 7.4.3.7):
o,."MV=164.7kPa
o, FPMU=_3175kPa

L

i ,MMHHHHA%\

7.4.3.7 — The reaction results in the surface support with the specific numerical values
(element average) for Case 1) [kPa]
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Case 2) FEM (see Fig. 7.4.3.8):

O M =4123.4kPa
ominFEM(2)=—379 kPa

: Al
Gl
: "x"r"!””y”

. ‘ “’ v“v,“w‘,r‘-ﬁﬂ HAA] A I «’ :‘\\
1\! ‘ \!\IHNHTH{”H PR ’
Sl f

T i M

"

115

Ll .
\x‘\o,\
N
o™

E N { T T 1 1 ‘\ N ]\ T /’ ”\ ”\ 1\ |
7.4.3.8 — The reaction results in the surface support with the specific numerical values
(element average) for Case 2) [kPa]

Case 3) FEM (see Fig. 7.4.3.9):

0 MY=14 295 5kPa
MBI = 561 kPa

min

°'\°Hl P

S TS

7.4.3.9 — The reaction results in the surface support with the specific numerical values
(element average) for Case 3) [kPa]
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Case 4) FEM (see Fig. 7.4.3.10):

o, "MI=_338 kPa

BRI

7.4.3.10 — The reaction results in the surface support with the specific numerical values
(element average) for Case 4) [kPa]

Case 5) FEM (see Fig. 7.4.3.11):

o, TM?=_501.5kPa

SRARARRRIRNT

7.4.3.11 — The reaction results in the surface support with the specific numerical
values (element average) for Case 5) [kPa]
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Case 6) FEM (see Fig. 7.4.3.12):
o, MY =—1095kPa

7.4.3.12 — The reaction results in the surface support with the specific numerical
values (element average) for Case 6) [kPa]

Case 7) FEM (see Fig. 7.4.3.13):

Last converged load level and the bearing capacity.

n™M=80%  N,,,"™"=0.80-3000=2400kN

TR

7.4.3.13 — The reaction results in the surface support with the specific numerical values
(element average) for Case 7) [kPa]
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Case 8) FEM (see Fig. 7.4.3.14):

Last converged load level and the bearing capacity.

n™MP=500, N, TM2_052.3000=1560kN

SR

7.4.3.14 — The reaction results in the surface support with the specific numerical
values (element average) for Case 8) [kPa]

Case 9) FEM (see Fig. 7.4.3.15):

Last converged load level and the bearing capacity.

n™M=30% Ny, "'=0.30-3000=900kN

TR
7.4.3.15 — The reaction results in the surface support with the specific numerical
values (element average) for Case 9) [kPa]

The differences between the hand calculations and the FEM-Design results are less than 5%.
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Download link to the example file:

http://download.strusoft.com/FEM-Design/inst170x/models/7.4.3 Elasto-plastic surface supports
with detach in an embedded plate.str
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7.4.4 Elasto-plastic trusses in a multispan continuous beam

Inputs:
Beam length L,=8m
Truss length L.=2m
Total distributed load q =20 kN/m
Structural steel (trusses with plastic limit force) S235, f, =235 MPa
Young's modulus of steel E.=210 GPa
Cross-sectional area (CHS 20-4.0) A, =201 mm?
Cross-sectional area (CHS 20-2.0) A; =113 mm?
Plastic limit force (CHS 20-4.0) Fpuimi = fyA1=47.2 kN
Plastic limit force (CHS 20-2.0) Fouim= fyA2=26.6 kN
Concrete (beam, linear elastic material model) C 25/30
Young's modulus of concrete E. =31 GPa
Cross-sectional area (rectangle) b =200 mm; h =300 mm
Inertia I, = 0.00045 m*

d

47.2kN
d

©

Ly =472 KN
Llim]

> = 26.6 KN
L =472 KN
L lim |

o~ 472 KN

CHS 20-4.0
Fe[.llml
L=2m

Lliml
CHS 20-4.0

CHS 20-4.0
F

F
CHS 20-4.0

F
CHS 20-2.0

F

- |

AAAAAAAAAAAAAAAAAAL
, L=4x2=8m

Ed 7
7.4.4.1 — The trusses with the plastic limit forces support a concrete beam

The problem is a concrete beam with five trusses as supports (see Fig. 7.4.4.1). The beam is
linear elastic. The trusses are linear elastic, perfectly plastic (with limit force, see the input table
above). Truss number 1, 2, 4 and 5 have Fpim1 = 47.2 kN plastic limit force. Truss number 3 has
Fouim2 = 26.6 kN plastic limit force. The external load is a total distributed load q =20 kN/m (see
also Fig. 7.4.4.1 for the geometry).

At this problem (loads and supports) the degree of static indeterminacy is three. We will solve
the problem with force method. The optimal solution with the force method is when the primary
structure is essentially a series of simply supported beams (see Fig. 7.4.4.2). Apply the unit
redundant forces X; (i = 1, 2, 3) in the lines of the removed constraints, pairs of opposite
moments at the end cross-sections of beams connected to hinges created above the intermediate
supports (see the primary structure Fig. 7.4.4.2).
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We apply vertical springs to represent the trusses as supports. The flexibility of the trusses (in

the elastic region):

L
= 2 6=4.738~10_5£ for truss number 1, 2, 4 and 5.

c

k= =
""E.A; 210-10°201-10"

L
2 =8.428- 10_5 for truss number 3.

c

k.=
>"E. A4, 210-10°113-10°

) y 2m P L=2m A” L=2m »
1 %kz El g k, 2 k,

uVVVVVV YYYVYVYVYVYVYVVYVYVY,

 YYVYVYVYVVYVYVYVYVYYY,

e

YYYVVY
S,,"=+qL,

f S, h=+qL,/2 f S, M=+qL, f S, "=+qL, f S, = +qL 2 f ‘
[kNm]

\ \ \
qL12
8

qL,2 qL1
8

gL’
8

8

Y T ¥ T ¥

LN
X,

H \/

X =1 X 0= 1

f S, =+1/2 * S, 0=-1 f S, =+1/2 (1) (1)
.@ []

+1
(1) f S, 0=+1/2 * S,0=-1 f S, 0= +172 (1)
[ ‘ [

+1

(1) <1> $,0=+12 W ,

+1

7.4.4.2 — The primary structure and the redundant forces with the reactions and internal forces for
the force method solution (at stage 1)

The bending stiffness of the beam:

E,1,=31-10°0.00045=13950 kNm"
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Fig. 7.4.4.2 shows the statical system of the analyzed problem with the primary structure.

By force method first of all we need to calculate the flexibilty matrix.
Flexible coefficients (see Fig. 7.4.4.2 for the values which provide these coefficients according
to the virtual force method):

11 11 _4 rad
=2 + +k,1-1+ ———1. -1
a,=as 3E1b k,22 k, k, 75 7587-10 Nm
11 —4 rad
=2 +2k,—=+k,1-1=2.0355-10
2=3g 1,, 122 KNm

4=y =k y 5 =2107-10" 2
L
Ap=a=ay,= agzzﬁlzb_kﬂ%_kﬂ%=—4.1935-105 r;(rln

These coefficients are independent from the external loads. The second step is the calculation of
the load constants based on the total load intensity g.

Load constants:

3
qlL qgL; 1 2qL 2qL;1 -
am—a30—224E:1b+k, 2’5—1( 5 L +k, ’5=1.220-10 *rad
3
gL, 2qL; 1 2‘]L1 —4
=21 42k ——k, =—5.202-10"*rad
oTtuE T, T2 2 2 e

The equation system of the force method:

X+a,=0 where:

a, a, a,| | 1.7587-10* —4.1935-10°  2.107-10°°
A=\a,, a, a,|=|-4.1935-10" 2.0355-10°" —4.1935-10"°
a,, a, ay| | 2107107 —4.1935-10° 1.7587-107"

[+

and

ra
kNm
1.220-107°

a,=|-5.202-10"*|rad
1.220-107 |
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The inverse matrix for the solution:

| 6013 1147 —447.0 |
A =| 1147 5385 1147 ad
—447.0 1147 6013

The solution of the equation system:

—6.194
X =[0.003467 |KNm
—6.194

The calculation of the truss forces based on the force method (see also Fig. 7.4.4.2):
3
Sk=Sk0+Z SuX;
i=1

o L
S\ =8,=8,+8, X +S,X,+ S13X3=%+%X,+O-X2+O~X3= 16.90 kN

C L
Sz=S4=S20+SZ,X,+S”XZ+SBX3=2%—1-X,+%X2+0-X3=46.20kN

, L
S\=8, 45, X 45, X,+5,,X =2 %+%X,— 1 -X2+%X3=33.80kN

Since the plastic limit force for truss number 3 is Fyim = 26.6 kN the elastic behaviour with the
described statical system ended at load level ¢;:

9 _F o _ 266

= =0.7870
g S, 33.80

q,=0.7870¢=15.74 kN/m
At this load level the normal force in truss number 3:
q: o
S3=;S3 =26.60 kN

After this load level the statical system is changing (see Fig. 7.4.4.3). For this system the degree
of static indeterminacy is 2. We will solve the problem also with force method. The optimal
solution with the force method is when the primary structure is essentially a series of simply
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supported beams (see Fig. 7.4.4.3). Apply the unit redundant forces X; (i = 1, 2) in the lines of
the removed constraints, pairs of opposite moments at the end cross-sections of beams
connected to hinges created above the intermediate supports (see the primary structure Fig.

7.4.4.3).

\AAAAAM

YYVYVYVYVYVYVVYVYVYYVYVYVVYVYYY,

ya ya ]:‘1:21‘1‘l ’a
u‘ YYVYVYVYVYVYVYVYVYYY

f S,y "=+aL /2 f Sy7=+q(L,L,)2 Sy ?=+q(L,+L,)2 ? Sy= *qL!Q? ‘@
[kNm]

| TP
W "y
2

8
qL;

N
CH
Y2

@)= 1]

X @=x1

f S, @=+1/2 * S, O=-(1/2+1/4) f S, @=+1/4 CI)
‘@ [

~ I

+1

CI) f S, 0=+1/4 S, 0= (1/2+1/4) * S 0=+172 f
— LT[ CL

+1

7.4.4.3 — The primary structure and the redundant forces with the reactions and internal forces
(at stage 2)

Flexible coefficients (see Fig. 7.4.4.3 for the values which provide these coefficients according

to the virtual force method):

1 1V —4 rad
—+—| =1.8483-1
2 4) 848310 kKNm

= = +
AT T T 3E 1, 22

_s rad

=3.0022-10 "——
3.00 0 Nm

1({1, 1
IZ +—

2k~ =
2 4

2
a,=a,= -
6E I
ct b

The calculation of the load constants based on the total load intensity g.
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Load constants:

3 3
gL, qL, gL, 1 gL gLy|[1 1 gL, qL,|1
=a,,= +k ——k + —+— |+k +
om0 g e, 2 2 N2 T2 \27 a2 T2 s
=3.353-10 "rad
The equation system is now:
‘ AX+a,=0 ‘ where:
Jo|an a|_|1.8483 107* 3.0022:107| rad
~ |ay ay| [3.0022:107 1.8483-10*|kNm
-5
a,= 3.353-10_5 rad
— 13.353:10
The inverse matrix for the solution:
4'=| 5557 9026 kNm
- —902.6 5557 | rad
The solution of the equation system:
—15.61
The calculation of the truss forces:
Ty gL, 1
S1 =S5 =S10+S11X1+S12X2=T+5X1+0'X2=12'20kN
S gL, qL 11 1
SZ:S4=S20+S2,X,+S22X2=( > L+ 22 S+ | Xt X =67 81kN
Since the plastic limit force for truss number 2 and 4 is Fyiimi = 47.2 kN this elastic behaviour
for this second load step with the described statical system ended at load level g (see also Fig.
7.4.4.4):
Fooo—dige 470 1374465
R —— 20 _0.1599
q S," 67.81 ’
q,=0.1599 g=3.198kN/m
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On this load level the normal force in truss number 2 and 4:

S,=5,=Ls +225 n=4720kN
q q

The remaining load is:

q9;=9—q,—¢,=1.062kN/m
This load is applied now on a new statical system too (see Fig. 7.4.4.4).

gL
&:%f:%@J

Thus the final normal force in truss number 1:

S=—S + S"+ S”' 19.50 kN
q q

\AAAAAAAAAAAAAAAAAL
L=2m L=2m L=2m L=2m

v 1 ya 1 jVa 1 Y 1 ’a
7 7 7 K

ﬁ**#i**#i***i**##i*ﬂ

7 L=2m A’ L=4m P L=2m y

A

El,
YYYVYVVYVYVYVVYVVVVVYVVY

W%&

7.4.4.4 — The statical systems of the structure at different load steps
(stage 1, stage 2 and stage 3)

Figure 7.4.4.5 shows the truss normal forces and the internal forces for the different load levels
with the different statical system. Fig. 7.4.4.5 also shows the final results of the problem (truss
normal forces and internal forces).

After the hand calculation we provide the FEM-Design calculation applying these plastic limit
forces for the trusses. Fig. 7.4.4.6 shows the FEM-Design model with the geometry and with the
main modeling issues.
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Y Y ¢ YYVVYVY F Y Y YV 574 kvm

L, L=2m , L=2m L, L]:Zm . L=2m V
d td d d d

? $,=+3636

f S,=+1330 kN f S,=+3636 kN f S,”=+26.60 kN

*
S,=+1330k
WAW/A\W)/N @ fiNm]

-4.875 +0.002729 -4.875

+

ﬁ%###%%#%%%##**%%%*#b3%%@

, L=2m L=4m , L=2m P
7 Kd rd
?Sl":H.QSIkN fsz":+10.s4kN S4":+26460ka S;':+1A951ka
W%WAW @[kNm]
-2.496 +3.900 -2.496
+
kl ECIb kl
AAAAAAAAAAAAAAAAZAZAZLIPEFF
¥ L=8m »
f S,"= +4.248 kN §;"=+4.248 kN *
O ()
+6.372 18.496 +6.372

“#HV‘#VV AR A A A AP
, L=2m , L=2m , L=2m , L=2m

d d 7 d ﬂv
S~ +47.20
f $,=+19.50 kN f S,=+47.20 kN f S;=+26.60 kN f
S.=+19.50 kN
AN AN @[kNm]
N L
-0.999 -0.999
+12.40
7.4.4.5 — The superposition of the different load level results and the final truss forces and internal forces
for the problem
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Point support: 5.1
K] ............. 1.000e+10/ 1.000E+10
PIFN] ............ NONO

—> e — ¢ —_— — > —

Line distributed force

qija2 k] ... 20.0/20.0
Load case 1
Comment ...

Direction is constant along action ine.

Intensity meant zlong action line.

2.00

| 8.00

7.4.4.6 — The FEM-Design model

After the nonlinear plastic calculation Fig. 7.4.4.7 shows the normal forces in the trusses. Fig.
7.4.4.8 shows the final moment diagram. The last converged equilibrium load level is at 100%
of the total load, thus the equilibrium exists for the total load level.

5060 47.20060 26:6000 47.2000 19.5000

7.4.4.7 — The normal forces in the trusses according to the plastic calculation [kN]

Sl

7.4.4.8 — The bending moment distribution in the beam according to the plastic calculation [kNm]

12.4000:
g—&—eﬁ{)

We can say that the hand calculation and the FEM calculation results are identical!
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Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/7.4.4 Elasto-plastic trusses in a
multispan continuous beam.str
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7.4.5 Elasto-plastic point-point connection between cantilevers

Inputs
Column height H=3m
Point load F, =500 kN or F, = 600 kN
Structural steel S 235
Young's and shear moduli of steel E,=210 GPa, G=80.77 GPa
Cross-section (both vertical columns) HEA 600
Cross-sectional area A.= 22646 mm’
Relevant inertia I.; =0.001412 m*
Relevant shear correction factor p.2=0.3314
Point connection with plastic compression limit Npi=200 kN

We have two vertical columns (HEA 600, S235) with fixed bottom and hinges at the top ends
(see Fig. 7.4.5.1). We applied a horizontal point load (with different intensity, see Fig. 7.4.5.1) at
the top of the left column. The tops of the columns are connected to each other with a point-
point connection with a plastic compression limit N,,= 200 kN.

The bending moment distributions in the three different cases (see Fig. 7.4.5.1) according to the
same bending stiffnesses and the plastic compression limit in the point-point connection are
trivial.

Point connection: Point connection: Point connection:
No plastic limit Plastic limit compression force: 200 kN Plastic limit compression force: 200 kN
F, =500 kN « F=500kN o F.=600kN R
— ) N — ) N g O———m——C) N
£ £ £
5 i v
jas} jan} jan}
7777770777777 777777077777K
750 750 900 600 1200 600
o o o
7.4.5.1 — The three different problems and the different bending moment distributions in the columns

141



Verification Examples FEM-Design 18

If there is no limit compression force in the point-point connection the distribution of the point
load is equal on both top ends of the columns:

M, V=F,/2- H=500/2-3=750 kNm

M, V=F,12-H=500/2-3=750kNm

M ?'=(F,—N ,)) H=(500—200)3=900kNm
M,?=N - H=200-3=600kNm

M '=(F,—N ,)H=(600—200)3=1200kNm

pl

M,P)=N ;- H=200-3=600kNm

The displacements of the top points of the columns:

F,J2)-H F,2-H .3? -
o (VT (500/2)}3 500/2:3 _§83mm
3E L.  p.,GA. 3-210-10°0.001412 0.3314-80.77-10°-2.2646-10
F,2)-H F,2-H 3% -
e2(1)=( ,12) L F _ (5006/2)3 N 500/263 SRR
3E I,  p.,GA. 3-210-10%0.001412 0.3314-80.77-10°2.2646-10
S Fi=Ny)H (F=N,)-H__ (500-20003° (500—-200)-3 _
! 3E I, p.,GA,  3-210-10°0.001412 0.3314-80.77-10%-2.2646-10 "
=10.59mm
N, H N, H e :
=N Bl N H 2003 2003 _—7.06mm
3EI, p.,GA, 3-210-10°-0.001412 0.3314-80.77-10°2.2646-10
e(3)_(FZ—NPI)-H3+(F2—NPI)-H_ (600—200)-3° N (600—200)-3 _
! 3E I, p.,GA,  3.210-10%0.001412 0.3314-80.77-10°-2.2646-10"
=14.12mm
N, H N, H .33 :
ez(s)_ pl 4+t _ 200-3 + 200-3 =7.06 mm

" 3EJ, p,,GA, 3-210-10°0.001412 0.3314-80.77-10%2.2646-10>

Fig. 7.4.5.2 shows the FEM-Design model and their input parameters. The results of the FE
calculations according to the three different cases are in Fig. 7.4.5.3 and 7.4.5.4 (see also Fig.
7.4.5.1).

The bending moment diagrams and the displacement values of the top of the columns are
identical with the hand calculation.
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Point connection: CP-1
K [KNJ] ©ovooonens 1,000 +10/ 1,000 +10
Ky' kfm] . ... 1.0002+10f 1.0002+10
Kz [kN/m] 1.000e+10f 1.000e+10
Pif,x’ (kM) 200/200
PIf,y B ....c..... NofND
PIf,2 NI oo NofNo
[ TLTC I 0,000 +00/ 0.000e+00
€y [Nm/] ......... 0.00De+00/ 0.000e+00
Point load - Force cz' [khm/] 0.000+00/ 0.000e+00
[0 0 . 500 P‘m'"l [khim] .
Load case ..vve 1 Pim,y* fdir] ..
Comment..... Pim2 ]
Detach
T~ Interface ... 0.500
—

Beam:B.11
Material ovvvivvnn, § 235
Cross-section ..... HE-A 600
HE-A 600
Eccentricity [m] ... Conn.: End point
Crack: No
0.000, 0.000, 0.000
0.000; 0.000, 0.000 Beam: B.2.1
Connecton FRFFFF e ey B
ki Cross-section ..... HE-A 600
HE-A 500

Eccentricity [m] ... Conn.: End point
Crack: No

0,000, 0,000, 0.000
0.000, 0,000, 0.000

Connection ..., FRFFFF
FRFF--

Point support group: 5.1
Ko [kifm] . 1.000e+10/ 1.000e+10
Ky' fknfm] . 1.000e+10/ 1.000e+10
Kz’ (khfm] 1.000e+10/ 1.000e+10
PIf (kN .. NofNo

Plm, ¢ khim]
Pim, ' fkivm]

Pif,y" Tl No/No

PIf,Z M) .. NofNo

X NI/ s 1,7450-+08/ 1.745¢ 408 EnSrEswnockemmco

Cy' [m/] .. 17452408/ 1.745¢+08 Ko kNfm] ... . 1.000e+10/ 1.000e+10

Cz [khm/?) 1.745e+08/ 1.745¢+08 Ky [Nfm] .......... 1.000e+10/ 1.000e+10
Kz' [khfm] 000e+10/ 1.000e +10

PIfx [N

PIfy k] ..

Pim, 2’ (ktim]
Detach ............. No

1745408/ 1.745e+08
1.745¢-408] 1.7452+08
745e+08/ 1.745¢ 408

NofNo
Plm,y’ ] ...... NofNo
Pim, 2 k] ......... NofNo
Detach ............. No

7.4.5.2 — The FEM-design model of the problem with the inputs
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7.4.5.3 — The bending moment diagrams of the FEM solution for the three different cases
bending moments [kKNm], connection force [kN]
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10,59 7/06

8.83 8.83

7.4.5.4 — The displacement diagrams of the FEM solution for the three different cases [mm]

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst170x/models/7.4.5 Elasto-plastic point-point
connection between cantilevers.str
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7.4.6 Elasto-plastic point-point connection with uplift in a multispan continuous beam

Inputs:
Beam length Li=4m; [L=1L;=2m
Partial distributed load q=10kN/m
Point load F=5kN
Concrete (beam, linear elastic material model) C 25/30
Young's modulus of concrete E.=31 GPa
Cross-sectional area (rectangle) b =120 mm; h =150 mm
Inertia I, = 0.00003375 m*
Plastic hinge above support B (point-point connection) M;ira= 5 kNm
C support only bears compression uplift

A multispan continuous beam, a plastic hinge with limit moment capacity (as a point-point
connection) above support B and only compression resistance at support C with different types
of loads are given in Fig. 7.4.6.1.

q=10kN/m F—5kN
AAAAAAAARAL ¢ only
% compression
A B plastic hinge C support
M, p= 5 kNm
L=4m L=2m L=2m

4 4 4 4

Ed d d

7.4.6.1 — Multispan continuous beam with plastic hinge above support B and uplift at support C

First of all we make a hand calculation and then make a FEM-Design plastic calculation. At the
end of this chapter these two results will be compared.

According to the uplift and plastic behaviour we need to analyze and calculate the results in load
steps. The first load step ¢q,, F; are at a certain load level where the plastic hinge reaches its limit
moment value. On this load level there will be zero reaction force in support C, because this
support only can bear compression.

The 50% of the total load level: g, =5 kN/m, F;= 2.5 kN.
At this load level the specific bending moment values (see also Fig. 7.4.6.2):

M%=F,L,=2.5-2=5kNm this is the plastic limit moment capacity above support B.

. F,L, q,L} 2 54
M;IBmld:_ 12 2+q181 :_2§2+584 =7.50kNm

M2 =0 kNm
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At this load level the specific reaction values (see also Fig. 7.4.6.2):

I 4°
qIT_F1L2 5?—252
A,= 7 =—=———=875kN
1

2
q1%+F1(L,+L2)

B,= =13.75kN

C,=0kN

At this load level the specific deflection values according to virtual force method (see also Fig.
7.4.6.2):

o Bmid _ 1 _LJLJA/[II;e QILzzﬂgéﬁ —11.15mm

! EI,| 4 22 8 2384 '

Bemid _ 1 - LL, 2, 5 MiL;2 al’ 2L

=—|—M,+——=L,— L,=—[=-6.372

“ TEL| 2 3772 3778 132 i

c__1 sLo(LotL; 2 L+ Ly (LAL)'2. 5 gL', 2L +L;

_ MBEZ2 4+ = “M°— L= =—9.558
CTELIT2\T 2 T3 2 2 371 8 13 2 mm

After this load step the remaining loads (g», F>) are acting on a different statical system (see Fig.
7.4.6.3). The second 50% part of the total load level: ¢,= 5 kN/m, F,= 2.5 kN are acting on
separate simply supported beams.

= S KN/
il " F =25kN
u! \AA i \A ¢
s
A B c
] ©om
1115
5

AT~ _—
I ey

8.75 kN 7.50 13.75 kN

7.4.6.2 — The deflection and the bending moment diagram at the first load step (50%) which
causes M,,rsmoment above support B, and uplift at support C

At this load step the specific bending moment values (see also Fig. 7.4.6.3):
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ABmid __ 92 L12 5.4°

M =922l 2% 10 0kN
: g 8 o
o L+L
M3 =F = 3=2.524L2=2.5kNm

At this load step the specific reaction values (see also Fig. 7.4.6.3):

L
=g, 5%=10.0kN

L, F
Bz=q271+72=5%+2?5=11.25kN

F, 25
C,=—2=%22-125kN
D)

At this load step the specific deflection values according to virtual force method (see also Fig.
7.4.6.3):

ABmid __ 59, L14

BCmid _ F,(L+ L3)3

=———=15.93 ; =3.186
“2 T3R4E1, A 48E 1, i
9~ 5 kN/m F,=2.5kN
mmnm '
e S
A B C
............................ e — [mm]
~ =%

15.93

1125 kN 25 1.25 kN

: T

10.0 kN

10.0

7.4.6.3 — Second load step (50%) which is acting on a different statical system with the plastic
hinge above support B and compression in support C

The final results come from the superposition of the two former calculated cases.

The final specific bending moment values (see also Fig. 7.4.6.4):
MP=M?=5kNm
M =M M P =7.50410.0=17.5kNm
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M7 =M MY =0+42.5=2.5kNm

The final specific reaction values (see also Fig. 7.4.6.4):
A=A4,+A4,=8.75+10.0=18.75kN

B=B,+B,=13.75+11.25=25.0kN
C=C,+C,=0+1.25=125kN

The final specific deflection values (see also Fig. 7.4.6.4):
et = g 4 o PM=11.15+15.93=27.08 mm

At the final deflection calculation of the middle point of BC span we need to consider the fact
that above support B a plastic hinge occurred and hence in support C compression is arising in
the second load step.

1 2

C
echidzechid—%+eBC'"id=—6.372——(_9'25 %8) 4 3.186=1.593mm

q=10kN/m

F=5kN
u Liimi AL ¢ only
\ 3% compression
A B plastic hinge C support
Mp]’Rd= kNm
L=4m L=2m L=2m
a ya ya Va
d 7 d d

\\ﬁ” 1593 A ©

17.50
7.4.6.4 — The final deflection and the final bending moment diagram with the reactions
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After the hand calculation we modelled this problem in FEM-Design. We adjusted a point-point
connection with plastic limit moment value above support B (see Fig. 7.4.6.5) and uplift at
support C (see Fig. 7.4.6.5).

Line distributed force
. 10.0/10.0

Comment ...

Direction is constant along action ine.

Intensity meant along action line. Point load - Force
FRN oo 5.00
Load case ... A
Comment .........
| % [Point support group: 5.3
[ 5 R 0.000e-+00/ 0,000e-+00
Pomnt conmection: CPL Ky' /] .......... 1.00D2+10/ 1.0002+10
Kz a 1.000e+10/ 0,002 +00
Kx' [ki/m] . 1.000e+10/ 1.000e+10 Dfom] o =
A Pifx [N .« 1.000e+15/1,000e+15
Ky' (k] 1.000e +10/ 1.000e+10 )
8 Pif,y M) vovverrrs. 1.0008+15/1,0008 +15
Kz [dijm] .. 1.000e +10/ 1.000e+10 e B T
2 [N ............. NofNo
PIf ] ... NofNo -
No/No Cx' [km/f] ......... 0.000e+00f 0.000e+00

Nojto Cy' [khm/°] 0.000e+00/ 0.000e +00
€2 [im/] 0.0002+00/ 0.0002+00
Pim, ¢ (ki) NoMNo
Pim,y k] ........ No/No
Pim,Z ] .......... No/No

1,745e 408/ 1.7452-+08
... 1.745e+08f 1.7452+08
1.745¢ +08/ 1.7452408
NofNo

Interface ..., 0.000

7.4.6.5 — The FEM-Design modell for the problem

Fig. 7.4.6.6 shows the reactions, bending moments and deflection values at load level 50%. The
differences between hand and FEM calculations are less than 1%.

9.506

7.50

-8.75
-13.75

7.4.6.6 — The FEM-Design results at load level 50%
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Fig. 7.4.6.7 shows the reactions, bending moments and deflection values at load level 100%.
The differences between hand and FEM calculations are less than 1%.

é

17.50

250<
-1.25 |

-18.75
5.00

-25.00§ —»; -5.00

7.4.6.7 — The FEM-Design results at load level 100%

Download link to th example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/7.4.6 Elasto-plastic point-point
connection with uplift in a multispan continuous beam.str

150


http://download.strusoft.com/FEM-Design/inst170x/models/7.4.6%20Elasto-plastic%20point-point%20connection%20with%20uplift%20in%20a%20multispan%20continuous%20beam.str
http://download.strusoft.com/FEM-Design/inst170x/models/7.4.6%20Elasto-plastic%20point-point%20connection%20with%20uplift%20in%20a%20multispan%20continuous%20beam.str

Verification Examples FEM-Design 18

7.4.7 Elasto-plastic edge connections in a building braced by shear walls

Inputs:
Geometry Fig. 7.4.7.1
Horizontal loads (on one storey, on one wall plane) V=10kN
Concrete (walls and slabs) C 25/30
Young's modulus of concrete E.=31GPa
Thickness of the walls/slabs t=20cm
Plastic edge connection shear force limit (above Wall4) Vo= 2.5 kN/m
Edge connection behaviour Without detach

The shear wall problem is given in Fig. 7.4.7.1. The given loads are only two concentrated
horizontal loads on the two storeys (see Fig. 7.4.7.1). The top of Wall4 only can bear v, = 2.5
kN/m plastic limit force.

We defined the problem and the model in FEM-Design (7.4.7.2).

Edge connection:
Plastic limit force in x direction: 2.5 kN/m

10kN Slabl

v L=4m P v L=4m v

7 7 7 7
7.4.7.1 — One planar wall system with geometry and loads

If all of the elements behaviour are linear elastic then the solution of this problem based on the
finite element method (according to the mechanical model of the elements) is “exact”.

Fig. 7.4.7.2 shows the finite element surface mesh of the problem.
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7.4.7.2 — The model with the equivalent loads, supports and the plastic edge connections

Fig. 7.4.7.3 shows the resultants of the reactions and the edge connection forces/moments
according to the linear elastic calculation.

We can see that the horizontal shear force in the edge connections (above Wall4, see Fig. 7.4.7.1
and 7.4.7.3) is:

V,=15.6kN

The ultimate plastic resultant shear force bearing capacity of the edge connection above Wall4
is:

V=v,L=254=10.0kN

Fig. 7.4.7.4 shows the resultants of the reactions and the edge connection forces/moments
according to the elasto-plastic calculation. The edge connection resultant shear force based on
the FEM-Design calculation (Fig. 7.4.7.4):

V.r™M=10.0kN
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734

— 2575304

261
487544

2.6353)

7.4.7.3 — The resultants of the reactions and the edge connections according to linear elastic
calculation (forces [kN], moments [kKNm])

\

\-\_
i
\-\-\
e
\_\\ \\
R
\_\-\
I
00
\‘\-\ 314538,

— 0.0000|
=,
756036
0000
75 6024

d

7.4.7.4 — The resultants of the reactions and the edge connections according to elasto-plastic
calculation (forces [kN], moments [kKNm])

It is obvious that according to the elasto-plastic calculation due to the plastic deformations on
the edge connections the final displacements need to be greater than the displacements of the
linear elastic calculation.
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Fig. 7.4.7.5 shows the displacements of the linear elastic (above) and the elasto-plastic (below)
calculations.

7.4.7.5 — The displacements according to linear elastic (above) and elasto-
plastic (below) calculation [mm]

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/7.4.7 Elasto-plastic edge
connections in a building braced by shear walls.str
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7.4.8 Elasto-plastic edge connections with detach in a shear wall

Inputs:
Geometry Fig. 7.4.8.1
Vertical distributed load gqv =50 kN/m (N =200 kN)
Horizontal distributed load intermediate levels gz = 15 kN/m (V = 60 kN)
Horizontal distributed load top level qui = 7.5 kKN/m (V/2 =30 kN)
Concrete (wall) C 25/30
Young's modulus of concrete E.=31GPa
Thickness of the wall t=20 cm
Plastic edge connection shear force limit Vo1 = 20 kN/m
Plastic support shear force limit Vo2 = 50 kN/m
Edge connection / Fixed support behaviour Detach in vertical direction

Fig. 7.4.8.1 shows the shear wall problem with the geometry, external loads and the behaviour
of the edge connections and the support.

i N =200kN
< V2=30kN X
Edge connection 1:
Detach for tension in z direction g
Plastic limit force in x direction: 20 kN/m_ c,?
T o)
AN LN =200 kN
- «— V=60 kN X
Edge connection 2:
Detach for tension in z direction g
Plastic limit force in x direction: 20 kN/m_ c,?
) . jan
N LN =200k
< «— V=60 kN X
Fixed Line support:
Detach for tension in z direction =
Plastic limit force in x direction: 50 kN/m_ o
[
z \\\ fas}
\
N\
I—»X 3 X
L=4m
Figure 7.4.8.1 — The properties of the supports and edge connections of a shear wall

According to the loads and the geometry the internal forces and the eccentricities can be
calculated (see Fig. 7.4.8.2).

M1—2=045m

o= M, 360 M3:ﬂ_
' N, 200

c =229 _090m ; e==2=19_135
“=N, T 400 M ST T 600 m
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i N =200 kN
< V/2=30kN
Z =90/200[=
i Z 2
N =200 kN 3 - g #7045
. - . : '
-
“—V =60 kN &
E < e, = 360/400
N =200 kN = g # 090m
: .
(=)
<~V =60 kN —— ; 2z
I = $10/600
[==] I— (=4 =) 63 = F
(=3 v
° - Z =1.35m
— = |
+ + ¥ *©
Do O @
Figure 7.4.8.2 — The internal force distribution and the eccentricities of the normal forces

The eccentric normal force at the top level (see Fig. 7.4.8.2) is inside the Culmann's kernel
therefore the specific normal force distribution can be calculated with the following equations
and approximations:

N, M —200 90
+ 1 1
By o220 g Y 5 002=21625KN/
A= VT e T00 0 0.2-4/12 "
N M _
po=i, P, =200, 0 5.02=-83.75kN/m

AT T Tmed T 4 T 00412

The eccentric normal forces at the intermediate levels (see Fig. 7.4.8.2) are outside the
Culmann's kernel therefore the specific normal force distribution can be calculated with the
following equations and approximations (based on the resultant of the stress volume):

) N _
3(£—e2)ln22=N2 n=—r—2 = =400 op4iN/m
: )2 3|L-c,|d 3[2-00|L
27 %2 *\12777)2
) N _
3(£—e3)lnz3=1v3 ny=—rd = =000 615 41N/m
: )2 3[Loe, |t 3[2-135)L
27 %7 2277
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The average shear forces at the different levels:

Vi _ 30
nle,average_ 4 t= 02-4 0.2=7.5 kN/m

V, o 90

active2 - 4
0.2-3[ =—0.9
(2

n xz2 ,average = A

) 0.2=27.27kN/m

Vs 150
active3 4
0.2-3[ =—1.35
(2

n xz3 ,average = A

) 0.2=76.92kN/m

You can see these calculated values in Fig. 7.4.8.3 also.

7@2_9(?22500 B Average shear force:
¢ R 7.5 kN/m
83,75 kKN/m -16.25 kN/m
e, = 360/400 +
#7090m | Average shear force in the
¢ ) 3.30m active compressed zone:
 E—— 4 27.27 kN/m

e, = $10/600 -242.4 kN/m Average shear force in the
=1.35m %Y/ﬂ active compressed zone:
i 76.92 kN/m

-615.4 kN/m

Figure 7.4.8.3 — The eccentricities and the specific normal forces and average shear forces

The plastic limit shear forces differ from each other at the edge connections and the fixed
supports hence one-by-one the load-bearing capacities are (see Fig. 7.4.8.1 and 7.4.8.3):

n=—2"0 =29 _266.7%
n 5

xz1,average

Vo1 20

= =73.34%
nxz2,average 2727 °

n,=

Vol 2 _ 50
nsz,average 7692

ny= =65.00%

Thus the significant value which gives us the load-bearing capacity of the structure is the last
value: 65% of the external load.
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After the hand calculation we have made a finite element calculation with FEM-Design.

The model can be seen with the adjusted parameters in Fig. 7.4.8.4 (see also the input table for
the data).

50.0 kN/m

50 kN/m 750N/
——1

50.0 kN/m

50.0 kN/m

5.0 EN/m 15 0kN /!

e

S

Figure 7.4.8.4 — FEM-Design model with fixed support and the vertical and horizontal forces

The first FEM-Design results can be seen in Fig. 7.4.8.5. In this case the results are based on the
uplift (detach) calculation (without plastic calculation).

The results (Fig. 7.4.8.5) are in good agreement with the hand calculation. Do not forget that by
the hand calculation we assumed prismatic beam behaviour by the specific normal force
calculation but by the FEM calculation the behaviour is more compound.
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Figure 7.4.8.5 — Distribution of the reactions and connection forces with detach calculation specific
normal forces [red and blue, kKN/m] and shear forces [green lines, kKN/m]

In the second calculation we considered plastic analysis with detach (uplift) in FEM-Design.
According to the plastic behaviour the last converged (equilibrium) load level was:

nFEM —62%

Fig. 7.4.8.6 shows the edge connection forces and the reactions for the last converged solution.

The difference between the hand and FEM calculation is 4.6 %.

HAND M

=™ 65%—62%
- 77HAND - 65 %

3

A =4.6%
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Figure 7.4.8.6 — Distribution of the reactions and connection forces with plastic detach calculation
specific normal forces [red and blue, KN/m] and shear forces [green lines, kN/m]

Last converged (equilibrium]) load level: 62 %

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst170x/models/7.4.8 Elasto-plastic edge
connections with detach in a shear wall.str
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7.4.9 Elasto-plastic line-line connections in a square plate

Inputs:
Square slab L=Li=L,=8m
Slab thickness t=20cm
Applied distributed load p=15kN/m?
Concrete C 25/30
Young's modulus of concrete E.=31 GPa
Isotropic positive plastic moment capacity m’=m, =m, =30 kNm/m
Line-line connection, with plastic limit specific my PHimi= 30 kKNm/m
moment (see the adjusted local coordinate
system in Fig. 7.4.9.3)

In this example line-line connections with plastic limit force/moment will be used to calculate
the plastic load-bearing capacity of a simly supported square plate with isotropic positive plastic
moment capacity. If the slab has constant isotropic positive plastic moment capacity (m,” = m,"
=30 kNm/m) the yield-line layout is known in this case [11] (see Fig. 7.4.9.1 and 7.4.9.2).

7.4.9.1 — Simply supported square slab with distributed load

If the correct (real) yield-line layout is known the plastic load-bearing capacity can be calculated
according to a kinematically admissible virtual displacement field which belong to this layout.
The maximum total distributed load which causes the plastic failure of this square slab comes
from the equality of the external and the internal virtual work.

Wint = Wext
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The external work done by loads:
max max 1 max 1
W oi=PranpO V= "Duanp L. Ly§ 1=pypLL 3 1

The internal work done by resisting moments:

w. t=m+pl(5@yLy+m;p15@ L=m™ 20 am" 2 —gm'
in x x x X Lx y Yo x

y

Hence the plastic load-bearing capacity:

e 24m° 24-30 kN
PranD = —T =—F=1125—
L 8 m

m 7 =my*l“‘ =30 kNm/m

de=1
50, = 4/L,

7.4.9.2 — Simply supported slab with the virtual displacement system

In FEM-Design along the yield lines line-line connections will be applied with adjusted plastic
limit capacity m, 7= 30 kKNm/m. Fig. 7.4.9.3 shows the local co-ordinate system of the line-
line connections. We applied these systems because the resisting positive moments were
assumed to be isotropic, hence the adjusted plastic limit capacity of the line-line connection was
specified along the line (see Fig. 7.4.9.3).

Fig. 7.4.9.3 also shows the adjusted parameters, geometry and the applied p = 15 kN/m? uniform
distributed load.
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Line connection: L3

7.4.9.3 — FEM-Design modell with plastic line-line connections along the yield-lines

With FEM-Design the last converged equilibrium load level was at 72%. It means that the load-
bearing capacity due to the plastic calculation is:

P =0.72-p=0.72-15=10.8 kKN/m’

The difference between the hand calculation and FEM analysis is 4%.

A Pravo— Prew _ 11.25-10.80
s 11.25

P ranp

=4%

Fig. 7.4.9.4 shows the plastic connection forces in the adjusted line-line connections (which are
the expected values according to the specific limit moment capacity).

,5@

7.4.9.4 — The relevant plastic connection moments [KNm/m]
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Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/7.4.9 Elasto-plastic line-line
connections in a square plate.str
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7.5 Calculation with construction stages

7.5.1 A steel frame building with construction stages calculation

Inputs:
Strength of the steel S235; E=210 GPa
Columns HEA 400
Beams IPE 600
Line load on each floors pea= 10 kKN/m

In this chapter we will show a short example about the construction stage calculation through a
steel frame building with the “Incremental Tracking Method”. Fig. 7.5.1.1 shows the geometry
of the frame building. In this figure we also indicated the loads and the three different stages
which were considered in this analysis. In this example there were three different stages by the
three different storeys. As a simplification by the three different stages there were only a 10
kN/m line load on the beams one-by-one on each stages (see also Fig. 7.5.1.1) for the better
comparison.

By the incremetal tracking method of the construction stage calculation FEM-Design handles
the different stages as different structures. We apply the given loads on these different structures
and apply a superposition by the internal forces and displacements respectively. Thus basically

the construction stage calculation is a nonlinear calculation with nonlinear boundary conditions
and statical systems through the whole analysis.

First of all we will show the different stage calculations one-by-one with the different boundary
conditions and statical systems and superpose the results to verify the FEM-Design construction
stage calculation method. In the end we will compare the results and show the differences
between the regular and the constuction stage calculation method as well.

>
4,10 kN/m
on
o &
s,
|4
>
q,,~10 kN/m
Nl g
o)
s I,
|-
5(
q,~10 kN/m
L
s
|4
b4 L=6m L =6m Y K
I\y b I\y b I\y
7.5.1.1 — The geometry and the considered loads on a steel frame building
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.5.1.2 — The translational displacements [mm] separately according to the three different stages and the
different load situations

Fig. 7.5.1.2 shows the different stages with the different statical systems and loads. Next to the
structural view you can see the translational displacements for each stages one-by-one.

With the construction stage calculation we accumulate these results therefore for the verification
we need to superpose these values to get the final stage results. We calculated the displacements
at specific points of the beams by the symmetry axis of the structure (see Fig. 7.5.1.2):

€p=Cgrp1 T €sropr T €sr35=5.95+2.56+1.67=10.18 mm
€p=CgriprtCsrprt €grsp,=0+2.60+1.69=4.29mm

€p;= Cgrps T Csrops € srsp—0+0+1.74=1.74mm
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4 T \5‘35 535+
7.5.1.3 — The bending moment diagrams [KNm] separately according to the three different stages and the
different load situations

Fig. 7.5.1.3 shows the different stages with the different statical systems and loads. Next to the
structural view you can see the bending moment diagrams for each stages one-by-one.

With the construction stage calculation we accumulate these results therefore for the verification
we need to superpose these values to get the final stage results. We calculated the bending
moments at specific points of the beams by the symmetry axis of the structure (see Fig. 7.5.1.3):

My =M g+ M g+ M s =89.96+62.67+39.55=192.2kNm
M gy =M gt M gt M o0, =0+17.74+41.01=58.75 kNm
My =M gyt M g+ M g, =0+0+(—2.18)=—2.18kNm
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Fig. 7.5.1.4 shows the final accumulated displacement field at the end of the stage calculation in

FEM-Design. Here you can see the results at specific points of the beams by the symmetry axis
of the structure:

€pirey —cs —10.18 mm
€porey —cs —4.29 mm

€3y —cs — 1. 74mm

R4

\\—m

incremental tracking method

7.5.1.4 — The final accumulated translational displacements [mm] according to the construction stage

Fig. 7.5.1.5 shows the final accumulated bending moments at the end of the stage calculation in
FEM-Design. Here you can see the results at specific points of the beams by the symmetry axis
of the structure:

M s s =192.18kNm
M s s =58.75kNm

M g3 s =—2.18kKNm

3574 ——=
|

6337 —lapse =

7.5.1.5 — The final accumulated bending moment diagram [KNm] according to the construction stage

~
12341 z =

4496

incremental tracking method

44,96
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The verification results are identical with the FEM-Design calculation.

At the end of this chapter let's compare the final construction stage results with the results of a
calculation without construction stage calculation method (regular calculation on the frame with
one statical system and load distribution). Fig. 7.5.1.6-7 show the displacements and the bending
moments after a regular calculation.

The results based on a regular calculation:

€p1rar —withowcs =492 M 5 M pion s =81.78 KNm
€porar —withowcs =493 MM 5 M poo owes=83.29KkNm
€p3ran —withowcs =494 MM 5 M pop s =65.52kNm

In this verification example the maximum displacement from the construction stage calculation
is 2.07 times greater at the first floor (compare Fig. 7.5.1.4 with Fig. 7.5.1.6). The bending
moment value is 2.35 times greater at the first floor by this verification example (compare Fig.
7.5.1.5 with Fig. 7.5.1.7).

R4

7.5.1.6 — The translational displacements [mm] according to the regular calculation method
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7.5.1.7 — The bending moment diagram [KNm] according to the regular calculation method
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By a real frame structure the difference in the final results are not that much if we consider and
add the live loads to the final stage results. Here in this example to show and emphasize the
calculation method only a self-weight-like load was considered.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/7.5.1 A steel frame building with
construction stages calculation.str
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8 Footfall analysis

8.1 Footfall analysis of a concrete footbridge

Example taken from Ref. [13]. Let's take the following footbridge statical system from Fig.
8.1.1.

Inputs for the self excitation footfall analysis:

Dynamic elastic modulus of concrete E =38 GPa

The distributed load (load-mass conversion) p=18.13 kN/m

Number of considered mode shapes N=3

Inertia of the cross-section [=0.056 m*

Area of the section A=0.77 m?

Number of footsteps (conservative estimation) Niootstep = 100 pcs

Mass of the walker m=71.36kg

Frequency weighting curve W,

The excitation frequency interval fomin= 1 Hz, f; max= 2.8 Hz

Frequency steps steps = 100 pcs

The cut-off eigenfrequency fow=15 Hz

Damping (=15%

Fourier coefficients The Concrete Centre Table 4.3
¥ L=20m 7 L=20m 3

Figure 8.1.1 — The concrete footbridge with the considered load-mass conversion

The model is divided into 16 finite bar elements. The given distributed load is converted to mass
with 1.0 factor (1848 kg/m) for the eigenfrequency calculation. The statical system is a beam
with the given stiffness parameters and with 3 supports (see Fig. 8.1.1). All of the necessary
parameters for the footfall analysis is given in the inputs. In FEM-Design the used excitation
method was the self excitation method. For the self excitation method the adjusted region
contained the full beam structure.

The first three mode shapes are visible in Fig. 8.1.2 based on the FEM-Design calculation. Table
8 contains the theoretical solutions about the eigenfrequencies of the first three modes according
to Ref. [13] and FEM-Design results are also indicated. There are good agreements between the
two results.
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Mode Theoretical (Hz) FEM-Design (Hz)
1 4.22 4.203
2nd 6.59 6.536
31 16.90 16.68

Table 8 — The first three eigenfrequencies

0.1645

0.1681

Figure 8.1.2 — The first three mode shapes |-]

This footbridge is relatively soft, therefore the steady-state acceleration will be greater than the
transient. As a simple hand calculation the RMS acceleration for walking at 2.102 Hz is the
following:

The amplitude of the excitation force by the second harmonic:

F,=2136 9 81(0.069+0.0056-2-2.102) =0.06478 kN

1000
In this case the second harmonic of the excitation frequency causes resonance.

The dynamic magnification factor for the accelerations by the 1* mode shape and 2™ harmonic:
2
7| L L2102
S 4.203
Y 1}1 2A2 ig \/ _n2 w
\/(1 2(f1 +45°2 (f) (1 2 (4.203
V0+4-0.015%1 2:0.015

2 2

2 2
2 [ 2.102
+4-0.015°-2 (4.203)

=33.33
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Based on these values the RMS acceleration at mid-span (see Fig. 8.1.2 also):

1 r 1 0.06478 m
aw,midspan,RMS[steadystate]:ﬁlurznidspan,]ﬁzlD1,2W2:ﬁ0'16452 1 333310:004131 ?

In Ref. [13] the peak acceleration value is @,.. = 0.06 m/s?, therefore the comparable RMS value
is:

e 0.06 m . _
aRMS—W— N 0.04243 & and the response factor based on Ref. [13]: R=8.5
Based on the FEM-Design calculation these two values are (see Fig. 8.1.3 as well):

@ gys pey=0-04432= and R=8.86 .

S

There are good agreements between the results. The difference comes from the fact that not only
the first mode shape has effect on the accelerations however in Ref. [13] and the hand
calculation here considered only the first mode.

0.04430 0.04430

. 8.860 ' 8.860 '

Figure 8.1.3 — The acceleration [m/s] and the response factor [-] in FEM-Design

Another interesting result could be the frequency curve. Fig. 8.1.4 shows the accelerations at the
midspan point in function of the excitation frequencies. The red line is the steady-state response
and the green one is the transient. Based on Fig. 8.1.4 we can say that in this example the
transient response is really negligible compared to the steady-state response. The frequency
curve clearly shows the resonance excitation frequencies where the peak RMS accelerations
arise.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst180x/models/8.1 Footfall analysis of a concrete
footbridge.str
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Figure 8.1.4 — Accelerations in function of excitation frequencies in FEM-Design
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Red: steady-state response

Green: transient response
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8.2 Footfall analysis of a composite floor

Example taken from Ref. [14]. Let's take a 130 mm deep normal weight concrete slab on top of
1.2 mm thick re-entrant deck. Slabs supported by 6.0 m span secondary beams at 2.48 m cross-
centres which, in turn, are supported by 7.45 m span castellated primary beams in orthogonal
direction, see Fig. 8.2.1. The input data and the geometry are available in Ref. [14].

Inputs for the self excitation footfall analysis:

Excitation region (see Fig. 8.2.1) The whole floor slab

The distributed load (load-mass conversion) p =4.48 kN/m?

Number of footsteps (conservative estimation) Niootsep = 100 pcs

Mass of the walker m=76kg

Frequency weighting curve W,

The excitation frequency interval fomin= 1.8 Hz, f, max=2.2 Hz
Frequency steps steps = 100 pcs

The cut-off eigenfrequency fow=15 Hz

Damping (=4.68 %

Fourier coefficients SCI P354 Table 3.1

In Ref. [14] with the finite element calculation the first fundamental natural frequency was:
f,=10.80Hz

In Ref. [14] with the finite element calculation the response factor was:
R=3.18

With the given parameters above and considering the geometry and the material properties
based on Ref. [14] FEM-Design calculation gives the following results (see Fig. 8.2.1 also):

fem=10.82Hz and R=3.82

We can say that there are good agreements between the results. However, it should be noted that
in Ref. [14] the results of the calculation is given, but the details of the finite element model and
calculation method is unclear, therefore there may be differences in the modeling methods. By
this example it is very hard to say that the result in Ref. [14] is relevant because the hand
calculation is quite different than the FEM calculation what was published in Ref. [14]. Based
on our opinion the indicated FEM result in Ref. [14] belongs to the transient response as well as
the result in FEM-Design.
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8.3 Footfall analysis of a lightweight floor

Example taken from Ref. [14]. Let's take a chipboard flooring on lightweight steel beams, see
Fig. 8.3.1. The input data and the geometry are available in Ref. [14].

Inputs for the full excitation footfall analysis:

Excitation point (see Fig. 8.3.1) In the middle of the floor
The distributed load (load-mass conversion) p = 0.69 kN/m?

Number of footsteps (conservative estimation) Niootsep = 100 pcs

Mass of the walker m=76kg

Frequency weighting curve W,

The excitation frequency interval fomin= 1.8 Hz, f, max=2.2 Hz
Frequency steps steps = 100 pcs

The cut-off eigenfrequency fow=15 Hz

Damping (=50%

Fourier coefficients SCI P354 Table 3.1

In Ref. [14] with the finite element calculation the first fundamental natural frequency was:
f,=1631Hz

In Ref. [14] with the finite element calculation the response factor was:
R=53.9

In FEM-Design the average finite element size was 0.40 m. With the given parameters above
and considering the geometry and the material properties based on Ref. [14] FEM-Design
calculation gives the following results (see Fig. 8.3.1 also):

f rey=16.13Hz and R=53.87

Fig. 8.3.2 shows the response factors in function of the given interval of the excitation force
based on FEM-Design calculation.

We can say that there are good agreements between the results. However, it should be noted that
in Ref. [14] the results of the calculation is given, but the details of the finite element model and
calculation method is unclear, therefore there may be differences in the modeling methods.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst180x/models/8.3 Footfall analysis of a
lightweight floor.str
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Excitation point
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Response factor [-]

______________
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. ! H ! i .
1.85 1.90 195 2.00 205 210 715 .20
Frequency [Hz]

Figure 8.3.2 — Response factor in function of excitation frequencies in FEM-Design
Red: steady-state response
Green: transient response
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8.4 Footfall analysis of a small stage with rhythmic crowd load

This calculation will be presented according to Danish Annex (Ref. [15]). The floor is a simply
supported concrete slab. The half of the slab is a stage where the rhythmic crowd activity will be
considered (see Fig. 8.4.1).

Inputs for the rhythmic crowd load footfall analysis:

Elastic modulus of concrete E=31GPa,v=0.2

Thickness of the concrete slab t=250 mm

Self-weight plus the considered imposed load p = 6.75 kN/m?

Mean static crowd load F,= 1.0 kN/m?

(on half of the slab, Fig. 8.4.1)

The excitation frequency f,=3 Hz

The cut-off eigenfrequency foe=30 Hz

Damping (=19%

Effective number of people n.=20

Fourier coefficients According to Danish Annex
Reduced possibility to move about

L=80m

L=80m

i )4

Figure 8.4.1 — The slab with the stage

The first eigenfrequency (based on finite element calculation):
f,=12Hz

In the Danish Annex the logarithmic decrement is given instead of critical damping ratio. The
logarithmic decrement with the given critical damping ratio from the inputs:

(6,4+6,)=27£=270.019=0.12
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The frequency response factor in the Danish Annex is given with:

H = > ! , therefore:
\/ AR R AT A
S 7T fy
1
H = =1.067 ;
2\2 2
1— 13 n 0.12-1-3
12 12
1
H,= - =1.333 ;
(23] L [o1223)
12 12
1
H,= - =2.281
2 2
\/ 1 33 n 0.12-3-3
12 T2

The considered Fourier coefficients including the size reduction factor:

a,K,=040 ;

1

a2K2=0.25\/0.1+(1—0.1)20=0.O952 ;

a3K3:0.05\/0.01+(1—O.01)21—0=0.0122 .

The dynamic magnification factor for displacements (according to Danish Annex):

3
kF=\/Z (K H P =(04-1.067+(0.0952-1.333+(0.0122-2.281)?

J=1

k . =0.4461

The acceleration response factor (according to Danish Annex):

3
ka=\/% D (jzocjlgztlj)z:%w12-0.4~1.067)2+(22.o.0957_-1.333)2+(32~0.01zz-2.281)2
i=1

k,=0.5013
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The maximum deflection of the slab under the mean static crowd load on the half of the slab
(based on a finite element calculation, see Fig. 8.4.2):

up=0.2132mm

00

Figure 8.4.2 — The slab with the crowd load and the displacements in [mm) under it in FEM-Design

The RMS acceleration of the structure induced by the vertical dynamic load (according to
Danish Annex):

a,=k,(27 f,Vu,=0.5013-(23)0.2132/1000=0.03797 =
S

The accelerations and the dynamic magnification factors for displacements based on the FEM-
Design calculation (see Fig. 8.4.3):

@ = 0.038328—“21

e 1y = 0.446

The difference between the hand calculation and FEM-Design calculation is less than 1%.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst180x/models/8.4 Footfall analysis of a small
stage with rhythmic crowd load.str
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0.0

Mo, Frequency [Hz] Dynamic magnification
factor [-]

1 12.0 0.446

Figure 8.4.3 — The accelerations in [m/s’] and the response factors [-] in FEM-Design
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9 Design calculations
This chapter is unfinished.

According to Eurocode standard!

9.1 Foundation design

This chapter is unfinished.

9.1.1 Design of an isolated foundation

This chapter is unfinished.

9.1.2 Design of a wall foundation

This chapter is unfinished.

9.1.3 Design of a foundation slab

This chapter is unfinished.
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9.2 Reinforced concrete design

In this chapter we will show some detailed verification calculations regarding to reinforced
concrete design according to EN 1992-1-1.

9.2.1 Moment capacity calculation for beams under pure bending

In this chapter we calculate the moment capacity of reinforced concrete cross sections under
pure bending (uniaxial bending).

The first example will be an under-reinforced cross section. The second one will be a normal-
reinforced and the third one an over-reinforced section. After independent “hand” calculations
we compare the results with FEM-Design values.

The following input parameters are common for the different cross sections regarding to this
subchapter.

Inputs:
Concrete characteristic compressive strength fu=30 N/mm?or 20 N/mm*
The end of the parabolic part (material model, see EC-2) €2=10.20 %
Ultimate limit strain of concrete (see EC-2) €2=0.35 %
Partial factor of concrete Y. = 1.50
Reinforcing steel characteristic yield strength fx = 420 N/mm?
Elastic modulus of reinforcing steel E, =200 GPa
Ultimate limit strain of reinforcing steel =25 %
Partial factor of reinforcing steel vs=1.15
Behaviour of plastic part (see Fig. 9.2.1.1.4) k=1.05
Concrete cover (on stirrups) ¢ =20 mm
Stirrup diameter ¢0s =8 mm

The external dimensions are the same for every cross section (b = 300 mm, h = 500 mm).

9.2.1.1 Under-reinforced cross section

In this example we put two longitudinal rebars with 16 mm diameter at the bottom left and right
corner of the strirrups (see Fig. 9.2.1.1.1, the concrete is C30/37). We neglect the effect of the
hangers. Two different “hand” calculation methods provided here. First of all with aim of the
most simple material models for concrete and reinforcing steel and secondly with improved
material models, which FEM-Design uses also.

First we calculate the moment capacity with the following material models (see Fig. 9.2.1.1.2).
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Figure 9.2.1.1.1 — The cross section of the under-reinforced case
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Figure 9.2.1.1.2 — The material models for the first calculation
left: concrete (only compression), right: rebars (both tension and compression)

Due to the under-reinforced section behaviour we assume that the rebars strains are at the design
ultimate limit strain value.

Based on the sum of the forces we can get the height of the active compression concrete zone
(see Fig. 9.2.1.1.3).
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Figure 9.2.1.1.3 — The assumed strains and stresses

We need to check that the assumption of the rebar strains were proper or not.

Based on the assumption that the concrete reaches its ultimate compression strain limit then the
strain in the rebars (see Fig. 9.2.1.1.3):

(d-1.25x,) €ar _ ((500—20—-8—8)—1.25-24.48)-0.0035

& 125x, 1.25-24.48

=4.957%>¢,,=2.25%

Thus the maximum concrete strain cannot be € = 0.35%, due to this the rebars reach the

ultimate strain, thus the assumption was correct, the failure mode is the rupture of the rebars
(under-reinforced section). But it has no effect on the former equilibrium equation.

The moment capacity of the section with the simple material models:

MRd,1=bxcfcd(d—%)=300-24.48.%.(464—%)%6.35 KNm

Secondly we calculate with improved material models, see the following equations.

Concrete (see Fig. 9.2.1.1.4 left side):

c(gc):fcdll_(l_i; )zl if 0<¢e,<e,

O
Oc(gc) :fcd if‘802<8csgcu2
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Rebars (see Fig. 9.2.1.1.4 right side):
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Figure 9.2.1.1.4 — The material models for the second calculation
left: concrete (only compression), right: rebar (both tension and compression)

The assumed stress and strain distributions (Fig. 9.2.1.1.5).
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Figure 9.2.1.1.5 — The assumed strains and the stresses

The concrete strains depends on the curvature and based on the improved material models this

led to a nonlinear equations.
e(x)=x-{x—x,)

The sum of the forces:
N.+N =0

Resultant force in concrete:

h
N,=b[ o(e,)dx
0
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Resultant force in rebars:

2
NSZZ Asiasi(gsi)

i=1
We solved the equation system with independent numerical method as a “hand” calculation.

The position of the neutral axis:

x,=38.18mm

The stress and strain values which belong to the equilibrium state are shown in Fig. 9.2.1.1.6.
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XT - =22.0179 c =-20 MPa
&, Yoo : Txn—38.184 mm
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Sl S :sud=22.5 %0 kfyd= 383.48 MPa
Figure 9.2.1.1.6 — The characteristic values of strains and stresses

The resultant of the concrete stress volume according to the independent “hand” calculation

h
N.=b [ o(e,)dx=—153.4kN
0

The resultant force in the rebars:

2 2
i=1 .

The difference between the compression and tension forces is less than 1% therefore this is the
correct position of the neutral axis and curvature according to the improved material models.

The centroid of the concrete stress volume measured from the top of the section:
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The moment around neutral axis provided by the concrete:
M, =N (x,—x,)=153.4-(38.18—14.34)=3.657kNm

Rebars moment around neutral axis:

2
M= A0, (e)(d—x,)=2-201.1-383.5(464—38.18)=65.64 kNm

i=1

The moment capacity with improved material models:
My, =M +M =3.657+65.64=69.30kNm

Ratio between the two hand calculations with the different material models:

M
Rd2 _ 69.30 —1.044
Mg, 6635

The moment capacity of the same section with FEM-Design (Fig. 9.2.1.1.7):
My ppy =68.98kNm

The difference between the two hand calculations is 4%.

The FEM-Design results of the stresses and strains are shown in Fig. 9.2.1.1.7. The strain values
and neutral axis position value between the hand and FE calculations are under 3%, the moment
capacity difference is less than 1%.

2
Sections 5 <
LC 1 2.07 o
&
Ny [kN] 0.00
Mgg 1 [KNm] 68.98 5
o
Mgq o [KNm] 0.00 y 1 ok
Utilization [%] 100
| S
0.00 22.52
Figure 9.2.1.1.7 — The FEM-Design results (strains [%o), neutral axis [mm])
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Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 80x/models/9.2.1 Moment capacity calculation
for beams under pure bending.str
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9.2.1.2 Normal-reinforced cross section

Here we put 6 longitudinal rebars with 16 mm diameter at the bottom of the cross section (see
Fig. 9.2.1.1.8, the concrete is C30/37). We neglect the effect of the hangers. The following
verification calculations will be performed with the improved material models (see Chapter
9.2.1.1).

The assumed stress and strain distributions in the section are shown in Fig. 9.2.1.1.8.
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Figure 9.2.1.1.8 — Cross section and assumed strains and stresses

The concrete strain depends on the curvature and based on the improved material models this
led to a nonlinear equation.

e(x)=x(x—x,)
The sum of the forces:
N.+N =0

Resultant force in concrete:
h
N,=b[ o(e,)dx
0
Resultant force in rebars:

6
NSZZ Asiasi(gsi)

i=1
We solved the equation system with independent numerical method as a “hand” calculation.

The neutral axis position is:
x,=93.06 mm

The stress and strain values which belong to the equilibrium state are shown in Fig. 9.2.1.1.9.
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Figure 9.2.1.1.9 — The calculated strains and the stresses

The resultant of the concrete stress volume according to the independent “hand” calculation:

h
N,=b[ o,(e,)dx=—452.03kN
0

The resultant force in the rebars:

16°-7 _
2 374.71=452.04kN

6
NSZZ Asiasi(gsi):6
i=1

The difference between the compression and tension forces is less than 1% therefore this is the
correct position of the neutral axis and curvature according to the improved material models.

The centroid of the concrete stress volume measured from the top of the section:

The moment around neutral axis provided by the concrete:
M, =N (x,—x,)=452.03(93.06—38.71)=24.57 kNm

Rebars moment around neutral axis:

6
M= A0 (e,)(d~x,)=6201.1-374.7(464—93.06)=166.8 KNm

i=1

The moment capacity with improved material models:

M 4y ;=M +M =2457+166.8=191.4kNm

192




Verification Examples

The moment capacity with FEM-Design (Fig. 9.2.1.1.10):

My pey=191.0kNm

FEM-Design 18

The FEM-Design results of the stresses and strains are shown in Fig. 9.2.1.1.10. The strain
values and neutral axis position value difference between the hand and FE calculation are less
than 4%, the moment capacity difference is less than 1%.

Sections 13

LC 1

Neg (KN] 0.00
Meq 1 [kNm] 191.00
Mg [kNm] 0.00
Utilization [%] 100

0.00

-3.51 %o

13.17 %o
Figure 9.2.1.1.10 — The FEM-Design results (strains [%o), neutral axis [mm])

97.7

500

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 80x/models/9.2.1 Moment capacity calculation

for beams under pure bending.str
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9.2.1.3 Over-reinforced cross section

We put 12 longitudinal rebars with 20 mm diameter at the bottom (see Fig. 9.2.1.1.11, the
concrete 1s C20/25). We neglect the effect of the hangers. The following verification calculations
will be performed with the improved material models (see Chapter 9.2.1.1).

The assumed stress and strain distributions in the section are shown in Fig. 9.2.1.1.11.
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Figure 9.2.1.1.11 — Cross section and assumed strains and the stresses

The concrete strain depends on the curvature and based on the improved material models this
led to a nonlinear equation.

e(x)=x(x—x,)
The sum of the forces:
N.+N =0

Resultant force in concrete:
h
N.=[bo,e)dx
0
Resultant force in rebars:

12
Ns:Z Asiasi(gsi)

i=1
We solved the equation system with independent numerical method as a “hand” calculation.

The neutral axis position is:
x,=317.95mm

The stress and strain values which belong to the equilibrium state are shown in Fig. 9.2.1.1.12.
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Figure 9.2.1.1.12 — The calculated strains and the stresses

The resultant of the concrete stress volume according to the independent “hand” calculation:

h
N,=b [ o (e,)dx=—1029.6kN

c
0

The resultant force in the rebars:
2 2
207 204'”-229.08=1029.06 KN

-317.13+6

12
NS:Z Asiasi(gsi):6
i=1

The difference between the compression and tension forces less than 1% therefore this is the
correct position of the neutral axis and curvature according to the improved material models.

Centroid of the concrete stress volume measured from the top of the section:

h
[bxo (e,)dx
0 =132.3 mm

X.= N

(&)

The moment around neutral axis provided by the concrete:
M, =N, (x,—x,)=1029.6(317.95—132.3)=191.1 kNm

Rebars moment around neutral axis:

12
M, => A0 (e,)(d~x,)=6314.1[317.1(462—317.95)+229.1(422—317.95)|]=131.0 kNm

i=1

The moment capacity with improved material models:

My =M +M =191.1+131.1=322.2kNm
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The moment capacity with FEM-Design (Fig. 9.2.1.1.13):
My ppy=314.0kNm

The FEM-Design results of the stresses and strains are shown in Fig. 9.2.1.1.13. The strain
values and neutral axis position value difference between the hand and FE calculation are less
than 2%, the moment capacity difference is less than 3%.

Sections 13

LC 1 -3.52 %o

Neq [KN] 0.00 5

Mgg 4 [KNm] | 314.00 I
» y 1 3]

Utilization [%)] 100 0.00 1.55 %,

Figure 9.2.1.1.13 — The FEM-Design results (strains [%o), neutral axis [mm])

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 80x/models/9.2.1 Moment capacity calculation
for beams under pure bending.str
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9.2.2 Required reinforcement calculation for a slab

In this example we calculate the required reinforcements of a slab due to elliptic and hyperbolic
bending conditions. First of all the applied reinforcement is orthogonal and then the applied
reinforcement is non-orthogonal. We calculate the required reinforcement with hand calculation
and then compare the results with FEM-Design values.

Inputs:
The thickness h =200 mm
The elastic modulus of concrete E.n =33 GPa, C30/37
The Poisson's ratio of concrete v=0.2
The design value of compressive strength f.a =20 MPa
Elastic modulus of steel bars E; =200 GPa
The design value of yield stress of steel bars fyq = 434.8 MPa
Diameter of the longitudinal reinforcement ¢ =10 mm
Nominal concrete cover ¢x =20 mm; ¢y, = 30 mm
Effective heights dx =175 mm; dy = 165 mm
9.2.2.1 Elliptic bending

In the first case the bending condition is an elliptic bending. In FEM-Design the model is a slab
with statically determinant support system and specific moment loads at its edges for the pure
internal force state (see Fig. 9.2.2.1).

ﬂ

0_kNin/m 6.00 kNm

BLA

=

Figure 9.2.2.1 — The slab with the edge loads for pure stress state
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Fig. 9.2.2.2 shows the constant internal forces in the slab due to the loads. Fig. 9.2.2.3 shows the
principal moments and their directions based on the FEM-Design calculation. According to the
pure stress state the principal moments and the directions are the same in each elements.

16 8. 6.
16 6.

Figure 9.2.2.2 — The m,, m,, and m,, internal forces in the slab [KNm]

XOXTXXTX XX XXX XX
XXX XX XXX X X XX
XXX XX XXX XX XX
XXX XX XXX XX XX
XXXXXXTLXXXXX
XXX XX XX XXX XX
XXX X X XX XX X XX
XX XXX XX XXX XX
XX XXX XXX X X XX
XXX XXX XXX XX XX
O 0 X XXX X X XX
Figure 9.2.2.3 — The m; and m; principal moments and their directions in the slab [kNm]

First of all the reinforcement is orthogonal and the hand calculation and the comparison are the
following:

1. Orthogonal reinforcement (©=90°)

The reinforcement is orthogonal and their directions concide with the local system (x=&,
y=%=m).
The moments in the slab (tensor of the applied moments):

m,=mez=+16kNm/m

m,=my=m,=+8kNm/m

m =msg=mg,=+6kNm/m
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The first invariant of the tensor: m +m =+24kNm/m

The calculation of the principal moments and their directions:

2 2
_+_ — —
m,=mx2my+\/( mxzmy) e 162+8+ 162 31 +6°=19.21KNm/m

m.+m, m.—m, g
m,= —
2 2

+6°=4.79kNm/m

o 16+8_\/(16—8

v 2 2
m,—m _
a,=arctan — x=arctanw=28.15°
m

Xy

Compare these results with Fig. 9.2.2.3. The difference is 0%.

The design moments (according to [9][10]) if the reinforcement (&) is orthogonal and their
directions concide with the local co-ordinate system (X,y):

Case a)
e g _COSQ L 1=2c0s@ o o c0s 90° +61_2COS900:+22kNm/m
WEETE T  hcosp 00 sing 14+c0s90° sin90°
My =my————tm =g L 16 L i 14kNm/m
I+cosg sSIN@  1+¢0s90°  sin90°

This is a valid solution! Because m,, .+m,,, =+36kNm/m>m +m =+24kNm/m

M, :=+22kNm/m  m,,, =+14kNm/m

Case b)
mud§=m§+mgicosq0 —m5971+2008(p=16+8 c0s 90 —61+2cOS90 =+10kNm/m
l—cosp °° sing 1—c0s90° sin90°
1 1 1 1
m,,,=mg————M.q——=28 -6 =+2kNm/m
M T 1—cosp  Using  1—cos90°  sin90°

Invalid solution! Because m,,:+m,,,=+12kNm/m <m +m =+24kNm/m

Case &)
2 2
mudgzmg—mmw=16—%=+11.5 kNm/m
9
mudn:O
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Invalid solution! Because m,;:+m,,,=+11.5kNm/m<m +m =+24kNm/m

Case 1)
m,, =0
i Me Mg —M g _ 16-8—6° _ 1575 KNm
U mesin®@+mgcos’p—mzgsin2 ¢ 16-sin>90°+8-cos’90°—6-sin (2-90°) m

Invalid solution! Because m,,:+m,,,=+5.75kNm/m<m +m =+24kNm/m

The results of the design moments based on FEM-Design are in Fig. 9.2.2.4 and 9.2.2.5. The
difference between the hand and FE calculation is 0%.

22
22

Figure 9.2.2.4 — The m,q :design moment for elliptic bending with orthogonal reinforcement [KNm]|
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Figure 9.2.2.5 — The m,q, design moment for elliptic bending with orthogonal reinforcement [KNm]

Calculation of the required reinforcement based on the valid design moments:

In x (&) direction:

Sum of the moments:
X X
mud§=fcdxc(dx—7€) ; 22000:20xc(175—70) : X,=6.403 mm

Sum of the forces:
X fw=a,: [, ; 6403-20=a,.4348 ; a,.=0.2945mm’/mm=294.5mm’/m

Fig. 9.2.2.6 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%.

Figure 9.2.2.6 — The ay: required reinforcement at the bottom for elliptic bending with orthogonal
reinforcement [mm?/m|
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In v (n) direction:

Sum of the moments:

mudr]

=fcdxc(dy—%) : 14000=20xc(165—%) . x,=4.298 mm

Sum of the forces:
X fu=a,, [ 3 4298:20=a,,4348 ; a,,=0.1977mm*/mm=197.7 mm’/m

Fig. 9.2.2.7 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%.

19
1

Figure 9.2.2.7 — The ay, required reinforcement at the bottom for elliptic bending with orthogonal
reinforcement [mm?/m|

Secondly the reinforcement is non-orthogonal and the hand calculation and the comparison are
the following:

2. Non-orthogonal reinforcement (¢=75°between & and 1)

The reinforcement is non-orthogonal and the & direction concides with the local x direction.
Thus y=9. The angle between the & directional reinforcement and m directional reinforcement is
¢=75°.

The moments in the slab (tensor of the applied moments):

m,=mg=+16kNm/m
m,=my=+8kNm/m

m =msy=+6kNm/m

The first invariant of the tensor:  m +m =+24kNm/m
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The design moments (according to [9][10]) if the reinforcement (&,n) is non-orthogonal:

Case a)
g e=me—my—30 4y JT2CSC g g COSTS | (122€0STS 417 354 Nm/m
) 1+cosg sin @ 14+cos75 sin75
1 1 1 |

8 +6 =+12.57 kNm/m

+m59 1 - o . o
sm @ 14+ cos75 sin 75

m,, =m,——
w7 1 cos @

This is a valid solution! Because m,,:+m,,,=+29.92kNm/m>m +m =+24kNm/m

m,,=+17.35kNm/m  m,, =+12.57kNm/m

Case b)
S cos@Q _m§91+gcos¢:16+8 cos 75 _61+200575 —1937kNm/m
; l—cos @ sin @ 1—cos75° sin 75°
mygy=my—————m =g L g 1 4 s58kNm/m
l—cosg sing  1—cos75°  sin75°

Invalid solution! Because m,, .+ m,,,=+13.95kNm/m<m +m, =+24kNm/m

Case §)
2 2
Mg e=mg— m§9=16—6—=+1 1.5kNm/m
My 8
m,,=0

Invalid solution! Because m,,.+m,,,=+11.5kNm/m<m +m =+24kNm/m

Case 1)
M, =0
2 2
Mg Mg—M= 16-8—6 kNm
Myan= .2 - 92 = . = . 20 20 . oy =17.38
mesin’ @ +mgcos’ p—mezysin2¢@  16-sin”75°+8-cos’ 75°— 6-sin(2-75°) m

Invalid solution! Because m,, .+ m,,,=+7.38kNm/m <m +m =+24kNm/m

The results of the design moments based on FEM-Design are in Fig. 9.2.2.8 and 9.2.2.9. The
difference between the hand and FE calculation is 0%.
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17
17

Figure 9.2.2.8 — The mq:design moment for elliptic bending with non-orthogonal reinforcement [kNm]

1.

Figure 9.2.2.9 — The mq, design moment for elliptic bending with non-orthogonal reinforcement [KNm|

Calculation of the required reinforcement based on the valid design moments:

In x (&) direction:

Sum of the moments:
xC xC
mud§=fcdxc(dx—7) : 17350=20xc(175—7) . X,=5.029mm

Sum of the forces:
X fuw=a, [y 5 5.029-20=a,.4348 ; @,.=02313mm’/mm=231.3mm"/m

Fig. 9.2.2.10 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%.
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Figure 9.2.2.10 — The a: required reinforcement at the bottom for elliptic bending with non-orthogonal
reinforcement [mm?*/m)

In n direction:
Sum of the moments:

x x
mudnzfcdxc(dy—f) ; 12570=20xc(165—?c) ; X,=3.854mm

Sum of the forces:
X fu=a,, [ 3 3.854:20=a,, 4348 ; a,,=0.1773mm’/mm=177.3mm*/m

Fig. 9.2.2.11 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%.

17
1

Figure 9.2.2.11 — The a,, required reinforcement at the bottom for elliptic bending with non-orthogonal
reinforcement [mm?/m)|
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Download links to the example files:
Elliptic bending, orthogonal reinforcement:

http://download.strusoft.com/FEM-Design/inst1 70x/models/9.2.2.1 Required reinforcement
calculation in a slab with elliptic bending and orthogonal reinforcement.str
Elliptic bending, non-orthogonal reinforcement:

http://download.strusoft.com/FEM-Design/inst1 70x/models/9.2.2.1 Required reinforcement
calculation in a slab with elliptic bending and skew reinforcement.str
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9.2.2.2 Hyperbolic bending

In the second case the bending condition is a hyperbolic bending. In FEM-Design the model is a
slab with statically determinant support system and specific moment loads at its edges for the
pure internal force state (see Fig. 9.2.2.12).

Ej==
olg.

= =
i iif

Figure 9.2.2.12 — The slab with the edge loads for pure stress state

Fig. 9.2.2.13 shows the constant internal forces in the slab due to the loads. Fig. 9.2.2.14 shows
the principal moments and their directions based on the FEM-Design calculation. According to
the pure stress state the principal moments and the directions are the same in each elements.

Figure 9.2.2.13 — The m,, m,, and m,, internal forces in the slab [kNm]

207



Verification Examples FEM-Design 18

B U S S U
e e e e e e e e e e e e
B S S S S S S S o
e e e e e e e e e e e
e e e e e e e e e e
/+f/+//+//%//+f/+5&+/;%//+//%f/+f/+/
e e e e e e e e e e
B T S S S e
e e e e e e e e e e e
35— A e e
{3s/§f}ﬁ4¥2r,%/,+//+//%//+//+//+//+/
I S S S S S

Figure 9.2.2.14 — The m; and m; principal moments and their directions in the slab [KNm]

Firstly the reinforcement is orthogonal and the hand calculation and the comparison are the
following:

1. Orthogonal reinforcement

The reinforcement is orthogonal and their directions concide with the local system (x=E,
y=9=m).
The moments in the slab (tensor of the applied moments):

m =m:=+16kNm/m

m =my=m,=—8kNm/m

m =msg=mg,=+6kNm/m

The first invariant of the tensor: m_+m =+8kNm/m

The calculation of the principal moments and their directions:

m_+m m—m, | > 16+(—8) 16-(=8)\ ,
m,=—"——2+ | +m, = > + > +6°=17.42kNm/m

2 2

2 2
m_+m m_ —m 16+(—8 16—(—8
m,= 7 y—\/( 7 L +mxy2= 2( >—\/( 2( )+62=—9.42kNm/m
m,—m _
a,=arctan — x=arctan&6l6=l3.32°
m

Xy

Compare these results with Fig. 9.2.2.14. The difference is 0%.

208



Verification Examples FEM-Design 18

The design moments (according to [9][10]) if the reinforcement (&,n) is orthogonal:

Case a)
mud.s:mg—msicosw +m§91_.2ﬂ=16+8 cos 90 +61_200890 =+22kNm/m
: 1+cos @ sin @ 1+c0s90° sin90°
mudn=m9;+m59 ,1 =—8 ! +6— ! =—2kNm/m
I+cos¢ s @ 1+cos90°  sin90°

Invalid solution! Because their have different signs.

Case b)
—— cosQ _m§91+2cos¢:16_ cos 90 0_61+?coso90 — +10kNm/m
- l—cos@ sin @ 1—co0s90 sin 90
mudnzmgé—mgg .1 =—8 ! -6 ! =—14kNm/m
1—cosg sin ¢ 1—cos90°  sin90°
Invalid solution! Because their have different signs.
Case &)
m 6’
Myge=me———=16——=+20.5kNm/m
m9 _8
m,q, =0
This is a valid solution at the bottom!
m,=+20.5kNm/m  m,, =0kNm/m
Case 1)
M, =0
mgmg—még 16-(—8)—6° kNm
Mygn= . 2 > B = 2 PO - 5 =—1025——
mesin" @ +mycos” p—mezosin2 @  16-sin”90°+(—8)-cos”90°—6-sin(2-90°) m

This is a valid solution at the top!
=—10.25kNm/m

m,=0kNm/m m,,
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The results of the design moments based on FEM-Design are in Fig. 9.2.2.15 and 9.2.2.16. The
difference between the hand and FE calculation is 0%.

20
20

Figure 9.2.2.15 — The m,,:design moment for hyperbolic bending with orthogonal reinforcement [kNm]

Figure 9.2.2.16 — The m.a, design moment for hyperbolic bending with orthogonal reinforcement [kNm]

Calculation of the required reinforcement based on the valid design moments:

In x (&) direction at the bottom:

Sum of the moments:

x
mudngcdxc(dx—%) ; 20500:203%(175_70) ; X,=5.959mm
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Sum of the forces:
X Sw=a a5 5.959-20=a,.434.8 ; a,.=02741 mm’/mm=274.1 mm*/m

Fig. 9.2.2.17 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%.

27
27

Figure 9.2.2.17 — The a,: required reinforcement at the bottom for hyperbolic bending with orthogonal
reinforcement [mm?/m)|

In v (n) direction at the top:

Sum of the moments:
xC x()
mudn:fcdxc dy—? ; 10250=20x, 165—7 ; X,=3.136mm

Sum of the forces:
X =0y [ 5 3.136:20=a,, 4348 ; a,,=0.1443mm’/mm=144.3mm"/m

Fig. 9.2.2.18 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%.
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14
1

Figure 9.2.2.18 — The ay, required reinforcement at the top for hyperbolic bending with orthogonal
reinforcement [mm?*/m]|

Secondly the reinforcement is non-orthogonal and the hand calculation and the comparison are
the following:

2. Non-orthogonal reinforcement (©=75°between & and 1)

The reinforcement is non-orthogonal and the & direction concides with the local x direction.
Thus y=9.

The moments in the slab (tensor of the applied moments):
m,=mg=+16kNm/m
m, =my=—8kNm/m
m =m:y=+6kNm/m

The first invariant of the tensor: m +m, =+8kNm/m

The design moments (according to [9][10]) if the reinforcement (1) is non-orthogonal:

Case a)
1_2 3 _ o
—— cosQ e .COS¢:16+8 cos 75 0+61 ?coso75 —120.64 KNm/m
I+cos@ sin @ 1+cos75 sin 75
1 1 1 1
Mgy =My —————Fm g ——=—8 -+6———=—0.144kNm/m
l+cos @ sm @ 1+cos75 sin75

Invalid solution! Because their have different signs.
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Case b)

cosp . 1+2cos@

o —16-8 cos 75 _61+2cos75
I—cosg

sin @ 1—cos 75° sin 75°
1 1 1 1

=M oM =8 b
Ccos @ sin @ 1—cos75 sin 75

Invalid solution! Because their have different signs.

=+3.78kNm/m

mud§:m§+m9

m =—17.01kNm/m

udn

Case )

m: 6’

mudgzmg_ m
9

m,,=0
This is a valid solution at the bottom!

m,=+20.5kNm/m  m,, =0kNm/m

Case 1)

M, =0

mgmg—még 16-(—8)—6" =_14'40kNm
m

mu = . . = . 0 4] . o
" mgsm2(p+mgcosz<p—m59s1n2(p 16-sin” 75°+(—8)-cos” 75°—6-sin (2-75°)

This is a valid solution at the top!
=—14.40kNm/m

m,:=0kNm/m  m,,

The results of the design moments based on FEM-Design are in Fig. 9.2.2.19 and 9.2.2.20. The
difference between the hand and FE calculation is 0%.

213



Verification Examples FEM-Design 18

20.
20.

Figure 9.2.2.19 — The m,,:design moment for hyperbolic bending with non-orthogonal reinforcement [kKNm]

-14.
-1

Figure 9.2.2.20 — The m,a, design moment for hyperbolic bending with non-orthogonal reinforcement [KNm]|

Calculation of the required reinforcement based on the valid design moments:

In x (&) direction at the bottom:

Sum of the moments:
X X
mud§=fcdxc(dx—?c) ; 20500=2Oxc(175—7c) ; X,=5.959mm

Sum of the forces:
X fea=ge [ra 5 5.959-20=a 4348 ; a,:=0.2741 mm’/mm=274.1 mm’/m

Fig. 9.2.2.21 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%.
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276.
276.

Figure 9.2.2.21 — The a, required reinforcement at the bottom for hyperbolic bending with non-orthogonal
reinforcement [mm?/m|

In n direction at the top:

Sum of the moments:
xC xC
mudn=fcdxc dy—? ; 14400=20x, 165—? ; X.=4.423 mm

Sum of the forces:
X fu=as,fa ;5 4423-20=a,434.8 ; a,,=0.2034mm*/mm=203.4mm*/m

Fig. 9.2.2.22 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%.

20
2

Figure 9.2.2.22 — The ay, required reinforcement at the top for hyperbolic bending with non-orthogonal
reinforcement [mm?/m|
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Download links to the example files
Hyperbolic bending, orthogonal reinforcement:

http://download.strusoft.com/FEM-Design/inst1 70x/models/9.2.2.2 Required reinforcement
calculation in a slab with hyperbolic bending and orthogonal reinforcement.str
Hyperbolic bending, non-orthogonal reinforcement:

http://download.strusoft.com/FEM-Design/inst1 70x/models/9.2.2.2 Required reinforcement
calculation in a slab with hyperbolic bending and skew reinforcement.str
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9.2.3 Shear capacity calculation

In this chapter we will show detailed calculations of beams and slabs regarding to shear force.

9.2.3.1 Shear capacity of a beam

In this example we check the shear capacity of a cantilever beam (see Fig. 9.2.3.1.1). The input
parameters and details are in the following table.

Inputs:
Concrete characteristic compressive strength fu= 25 N/mm?
Beam height h =350 mm
Beam width b., = 250mm
Partial factor of concrete Y. = 1.50
Reinforcing steel characteristic yield strength fx = 500 N/mm?
Partial factor of reinforcing steel vs=1.15
Stirrup distance s =200 mm
Longitudinal rebar diameter ¢ =20 mm
Stirrup diameter ¢0s =10 mm
Concrete cover ¢ =20 mm

F.,=V,,= 120 kN

4420

$10/200 =

o

.2.

w

Figure 1.1 — The cantilever, the cross section and the design value of the shear force

First of all we need to check that we need any designed shear reinforcement or not:

1

0.18 £ 018 1 $03-(100-0.016-25
V.o = max| 5 k(1000 /o lp d = max| 75 " ' 250-310 = 57.3kN

Y min 0.424

—
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where:

d=h—c—¢s—%:350—20—10—22—():310mm

200 200
k = min 1+\/7 — min! ! T\370 ! = 1.803
2.0 2.0

2
A, 4-20"
4

— mi —min{—2 | = 0016
Pr=mim b, d =M 555310 ;
0.02

0.02

1 3

3 L 3 1
V,m=0.035k% f % = 0.035-1.803%.25% = 0.424 .

It is necessary to use designed shear reinforcement because:
Viae=5T3kN <V, =120kN

Before the calculation of the designed shear reinforcement we need to check that the dimensions
of the cross section is enough to bear the designed value of the shear force or not.

Thus the upper limit of the shear force bearing capacity:

cot(0)+cotler) _ 1 550.99.0.54-16.6713F0 = 303.4kN
1+cot*(6) 1+1.3

VRd,max = acwbwzvfcd

where:

a,, = 1.0 the normal force is zero in the cantilever;

C

z=09d = 0.9-310 = 279mm
fck 25
= 0.6(1-2%| = 0.6[1-—=2| = 0.54
v 06( 250 0.6 750 0.540
a = 90°

cot(f) = 1.3 this value is adjustable in the program.

The compressed concrete strut can bear the acting shear force thus we can calculate the designed
shear reinforcement.

Vi = 120kN < V,, . = 303.4kN

Rd , max
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The next step is to calculate the shear capacity of the beam according to the defined shear

reinforcement (see Fig. 9.2.3.1.1).

_ 2792:10*n
200 4

VRd,SzfAswfyd(cot(chot(6))sina 435(0+1.3)1 = 123.85kN
Vea  120kN

= = 97%
Viees  123.8kN °

The numerical results based on FEM-Design are shown in Fig. 9.2.3.1.2. The difference
between the two calculations is 0%.

d [mm] 310
ko I 1.80
by [mm] 250
Bi s bl 0.01621
Voinz [NV 042 4 Utilization [%]
YRaez [KN] 571 0 B B - - B B o \L;t_laldl_l;%@;d,s_.ﬁ
(A /) fpua [Mimm] | 341.48 a0 Vaiz ! Vs
i z [ T
Vg o o [KN] 123.85
V2R s 057 o
Ay [mm’] 43067 20
tes [Mim] 3 0 il
Tra.e [kHm] 859
(A minfs) fywa Mimm] | 170.74
Tha,s [kMNm] 16.78
Ter/Tras ] 0.00
Utilization [%] 97
Figure 9.2.3.1.2 — The FEM-Design results

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/9.2.3.1 Shear capacity of a beam.str
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9.2.3.2 Shear capacity of a slab

In this chapter we will calculate the shear capacity of a slab (see Fig. 9.2.3.2.1). In FEM-Design
based on the internal forces we calculate the required shear capacity and based on the
parameters of the slab and the applied longitudinal reinforcement in it the actual shear capacity

is also computable.

Inputs:

Concrete characteristic compressive strength

f =20 N/mm?

Partial factor of concrete Y. =1.50
Reinforcing steel characteristic yield strength fx = 500 N/mm?
Partial factor of reinforcing steel vs=1.15
Longitudinal bar diameter in x direction ¢ = 14 mm
Distance in x direction between the bars sx = 150 mm
Longitudinal bar diameter in y direction ¢y = 10 mm

Distance in y direction between the bars

sy =150 mm

Concrete cover (on longitudinal bars in x direction) ¢ =20 mm
Slab thickness t=200 mm
The effective depth of the x reinforcements dy =173 mm
The effective depth of the y reinforcements dy =161 mm
Normal force in x direction ny =20 kN/m
Normal force in y direction ny = 20 kN/m

Vertical surface total load on the slab

qzea = 10 KN/m?

Fig. 9.2.3.2.1 shows the slab. Two opposite edges of the slab are simply supported and the other
two are free. The longitudinal reinforcements are also indicated in the figure.

$14/150

/etonso
| mpitg—rs T { {
S| =l sl
N :
I e \x s
T T

-
X

Figure 9.2.3.2.1 — The slab, the reinforcements and the design values of external forces
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First of all we need to calculate the required shear capacity of the slab which depends on the
internal shear forces in the two perpendicular directions of the slab local coordinate system
which were also indicated in Fig. 9.2.3.2.1.

The internal forces of the slab at a corner point (based on finite element analysis with 0.5 m
average element size (see Fig. 9.2.3.2.2-3):

Shear forces:

vxzz69.25kN —1731k—N
m
Normal forces:
nm20 M g, N
m

The maximum shear force in the slab according to the two shear forces in the two directions:

Vo=V 2. = (69257 +(1731 P =71. 38k—N

The direction of the maximum shear force (right-handed coordinate system):

v 17.31
t =arct =+14.03°
a=arc an(vxz) arc an(69.25)

The maximum shear force value could be different in every nodes and therefore the angle of it
also. It means that the shear force capacity must be computed in every nodes in different
directions (see the relevant formulas and equations below). Here is the calculation method for
the mentioned corner point:

The shear capacity with the applied parameters in the calculated main direction:

0.18
S = ] T k(lOOpafck) LI
vmm+k1
0.18 3
-2:(100-0.005967-20)> +0.15-0.09705 kN

=max{ 1.5 167 = 94.O2E , Where:

0.4427+0.15-0.09705

The longitudinal reinforcement in the main directions:

2 2 2
" _$%m 1000 _ 14" 7 1000 _ | 1o mm™
=T 4 5, 4 150 m
¢>7 1000 _ 10°7 1000 mm’
- = =523, 620
T 4 150

y
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The effective reinforcement area in the former calculated main direction:

a,=a,c08’ (0 —0°)+a,cos’(—90°)=1026cos’(14.03 °)+523.6 cos’(14.03°—90 °)=

2
=996.5 2
m
Effective height:
d+d, 1734161
o= 5 L= 5 =167mm
Reinforcement ratio in the main direction:
a,  996.5
0,=min d, 167-1000 = 0.005967
0.02

The effective normal force in the direction of the maximum shear force:

2 -2 .
n,=n,cos" a+n,sin"o+2n,cosasina=

:(—2o)cos214.o3°+(—10)sin214.03°+2~0cos14.03°sin14.o3°:—19.411ﬁ (compression)
m

Normal stress in the maximum shear force direction (the transformed normal force is
compression):

oazn—;z%zo.owos mljnz
o, =min {o. v }Cd]:min [0-8?67605 ]z 0.09705 mljf
Moditying factors:
k = min 1+\/% = min 1+\/% =2
2.0 2.0

3 1 3 1

V,n=0.035k% 2 = 0.035-0.15220% = 0.4427
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Figure 9.2.3.2.3 — The shear forces at the corner point
v:=69.25 [kN/m] (left side); v,»=17.31 [kN/m] (right side);

Figure 9.2.3.2.4 — The required shear force at the corner point: 71:38 [kN/m] (left side)
The applied shear force at the corner point: 94.03 [KN/m] (right side)

The results of the hand calculation are equal to the FEM-Design results (see Fig. 9.2.3.2.2-4).

Download link to the example file:
http://download.strusoft.com/FEM-Design/inst170x/models/9.2.3.2 Shear capacity of a slab.str
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9.2.4 Crack width calculation of a beam

In this example we calculate the crack width of a simple supported normal-reinforced concrete
beam under the given external load.

Inputs:
Concrete characteristic compressive strength fu= 20 N/mm’
Concrete effective tension strength fuerr = 2.2 N/mm?
Concrete's Young modulus E_=30GPa
Beam height h =400 mm
Beam width b =200 mm
Partial factor of concrete Y. =1.50
Reinforcing steel characteristic yield strength fx = 500 N/mm?
Young's modulus of rebars E =200 GPa
Partial factor of reinforcing steel vs = 1.15
Longitudinal rebar diameter ¢ =20 mm
Stirrup diameter ¢0s =10 mm
Longitudinal bars effective height d =360 mm
Cover (on stirrups) ¢ =20 mm
Partial factor of rebars vs = 1.15

F=120kN

A ..

L=40m

360 mm
400 mm

d
h

420

|
D11 (M) b =200 mm
|

M =120 kNm
ap

Figure 9.2.4.1 — The statical system, cross section and external loads

First we calculate the crack width with /inear-elastic non-tension concrete material model.

The crack width is calculated with the aim of the distance of the cracks and the difference
between concrete and rebar strains.

We=5, o e=149.48-0.001428=0.2135 mm
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In order to calculate strains we need to calculate the cracked reinforced cross-sectional data
(Stadium IL.: concrete and steel are linear-elastic and the cross-section is cracked).

The position of the neutral axis according to the cracked section (Stadium II.):

E X
S—&=6.667 5 bx,,%:aeAs(d—xH) thus: x,=136.75mm

“TE 7730

The moment of inertia:

b xi,
3

1,=5.878-10° mm"

_200-136.75° 420

I,=—""+4,a,(d-x,) 3 " -6.667-(360—136.75 )

The concrete and rebar strain difference:

[ \
fo. a4 22 )
o~k (14ap, ) 303.8—0.4- 5 146.667-0.0716]
Ae=¢, —¢€,,=max E, =max 200000
o, 303.8
0.6— 0.6- ==
E, k 200000 )
Ae=0.001428
Rebar stress:
—_ . 6. —_
S_qu(d x,,)ae:IZO 10°-(360 ?6'75)6.667 . 023038

k. depends the durability of the load, the given load is long-term loading:
k,=0.4

Effective tensile rebar ratio:

4’ 4¢°r 4-20% 7
A
Ppes=—" = 1 4 = 4 =0.0716

A,y bh. 2.5(h—d) 2.5-(400—360)
h—x, | 400-136.75

b-min{ ~ 3 200-min 3

h 400

2 2
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First we need to check if the longitudinal bars are close to each other or not:

=5 (e 0.)+ |5 (20410)+ 22| =200mm ; 1,,,,,=40 mm

actual —

timit > tacual therefore the rebars are close to each other, so the distance between cracks calculated
as follows:

20

—149.48
0.0716 mm

s, =34(c+¢,)+0.425k,k ¢ =3.4-(20+10)+0.425-0.8-0.5-

r, max 2 p off

k, depends the cohesion between the rebars and concrete, the reinforcements are ribbed:
k,=0.8

ks depends the strains in the cross-section, in this case we have pure bending:
k,=0.5

Numerical results:

Wy = 0.22mm

The difference between the numerical and hand calculation is less than 3%.

Sections 6
kq [ 0.80
e, [ 0.00199 2
Z
£, [-] 0.00000
: -1.64
ko [-] 0.50 .
hy of [ 73 2
- &
2 =

Acerr [MmM7] 14602 y 1 S
Pp.err [] 0.089

| XX ]
¢l 181 0.00 1.63
Sy max LMM] 142
(£ - Ee) [] | 0.001547
W [mm] 0.22
Utilization [%] 22

Figure 9.2.4.2 — The FEM-Design detailed results for crack width (strains [%o), neutral axis [mm))
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Now we calculate the crack width with non-linear non-tension concrete material model:

The following figure shows (Fig. 9.2.4.3) the concrete material model (dashed curve) but FEM-
Design modifies it a bit due to numerical stability (continuous curve).

>

€

€
c2 cu2 c

Figure 9.2.4.3 — The nonlinear concrete material model

First we need to calculate the neutral axis position and the beam curvature where the maximum
moment occurs (in this case the middle cross-section). The x is measured from the top of the
cross-section and its positive direction meant to the bottom of the cross-section.

The equilibrium equation respect to the forces:
N.—N =0

The force in the rebars according to that the rebars are in the linear elastic region:
N,=A,E e=A4.FE k(d—x,)

The force in the concrete according to the nonlinear compression material model:

h

chbfoc(e)dxzbffck(l—(1—gicz)2)dx=bifck(l—(l—%;"))z)dx

0

With numerical calculation the neutral axis and the curvature are:
1

x,=180.62mm ; x=9.05797-10"°—
mm

The compression and the tension forces:

" x(x,—x)V a0 9.05797-10°(180.62—x) |
No=b [ fo|1-|1=—=F] |dr=200 | 20| 1 -{1-= X dx
0 0 *

N _,=408.4kN
N ,=1257-200000-9.05797-10°-(360 — 180.62)=408.4 kN
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The crack width with non-linear concrete material model:
W, =S, . AE=141.57-0.001544=0.2186 mm

The concrete and rebar strain difference:
.

fc ,eff — . 2.2 . .
as—ktm(l +ap, o) 324.96-04- 55 (1+6.667-0.0859)
Ae=¢g  —¢&  =max E, =max 200000
o 324.96
0.6— 0.6 23220
E, 200000 J
Ae=0.001544
Rebar stress:
o,=E.e=E k(d—x,)=200000-9.05797-10 (360 — 180.62)=324.96 N .
mm
k. depends the durability of the load, this load is long-term loading:
k,=0.4
Effective tensile rebar ratio:
4¢° 4¢° 1 42071
A, 4 4 4
peff:A = bh = ( \ = \ :0.0859
oy Dhey 2.5(h—d) 2.5-(400-360)
h—x, 400—180.62
bmin{ ~— 3 200-min 3
h 400
2 2

First we need to check if the longitudinal bars are close to each other:

20

=5 (c+ 0+ |=5{ (20+10)+ 22 |=200mm ; 1,,,,,~40 mm

actual —

timit > tacwal therefore the rebars are close to each other, so the distance between cracks calculated
as follows:

D _34.(20+10)+0.425-0.8-0.5 —22
0.0859

Zm =141.57 mm

s, =34(c+¢,)+0.425k, k

r, max
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k; depends the cohesion between the rebars and concrete, the reinforcements are ribbed:
k,=0.8

k» depends the strains in the cross-section, in this case we have pure bending:
k,=0.5

The difference between the hand calculations are under 3% and the results of the second hand
calculation coincide with the FEM-Design results.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/9.2.4 Crack width calculation of a
beam.str

229


http://download.strusoft.com/FEM-Design/inst170x/models/9.2.4%20Crack%20width%20calculation%20of%20a%20beam.str
http://download.strusoft.com/FEM-Design/inst170x/models/9.2.4%20Crack%20width%20calculation%20of%20a%20beam.str

Verification Examples FEM-Design 18

9.2.5 Crack width calculation of a slab

In this example we calculate the crack width of a slab due to elliptic and hyperbolic bending
conditions. First of all the applied reinforcement is orthogonal and then the applied
reinforcement is non-orthogonal. We calculate the crack width with hand calculation and then
compare the results with FEM-Design values. The crack width calculation is relevant in SLS
combination, thus the internal forces (moments) in the examples come from a quasi-permanent
serviceability combination.

The calculation of the crack directions is based on [10] and [12] according to the tensor of the

reserve forces due to an arbitrary internal force and reinforcement distribution in the slab.

Fig. 9.2.5 shows the notation system of the applied angles in this chapter. The figure is valid for
bottom and top reinforcement separately.

The x-y system denotes the direction of the local co-ordinate system of the slab.
The ¢ and # directions are the directions of the reinforcements.

The ¢ and 7 angles are the angles between the reinforcement directions and axis x.
The ¢ angle is the angle between the two directional reinforcements.

The a angle is the angle between axis x and the direction of the crack.

The ay angle is the angle perpendicular to the direction of the crack.

Figure 9.2.5 — The notation of the angles

The concrete covers in the different directions are valid on top and bottom equally even if there
is no need for reinforcement in one direction.
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The thickness of the slab

h =200 mm

The elastic modulus of concrete

E.m =30 GPa, C20/25

Mean tensile strength of concrete

fm = 2.2 N/mm?

The Poisson's ratio of concrete v=0.2
Elastic modulus of steel bars E; =200 GPa
The characteristic value of yield stress of steel bars fix =500 MPa
Diameter of the longitudinal reinforcement (top and bot.) ¢ =10 mm

Nominal concrete cover (top and bottom as well)

c: =20 mm; ¢, = 30 mm

Average concrete cover

c=25mm

Effective heights (top and bottom as well)

d: =175 mm; d, = 165 mm

Effective heights (top and bottom as well)

d: =25 mm; d', =35 mm

Average effective height (bottom and top)

d=170 mm; d' =30 mm

Lever arm of internal forces

z=d-d =140 mm

9.2.5.1 Elliptic bending

The SLS moments in the slab in shell local system due to elliptic bending:
m_ =+16kNm/m the resultant of the x directional normal stresses.

m =+8kNm/m the resultant of the y directional normal stresses.

m =+6kNm/m the resultant of the x-y directional shear stresses.

Orthogonal reinforcement (¢=90°between & and 1n)

The reinforcement is orthogonal and their directions concide with the local system (x=¢, y=n).
Fig. 9.2.5.1.1 shows the applied reinforcements and the concrete covers. Thus & =0°; = 90°.

Ayn 5, =180 mm

— ™)

®D10/120=654.5 mm’/m

' §§ c§=20mm

s.=120 mm

—xC

. § c”=30mm

> @10/180=436.3 mm¥/m
x¢

Figure 9.2.5.1.1 — The applied orthogonal reinforcement for elliptic bending

231



Verification Examples FEM-Design 18

The applied reinforcement in the slab:

Only bottom reinforcement is necessary (see Chapter 9.2.2 for further information).

@2 1000 10> 1000 mm’
= = =654.5——
ST TS, T 4 120 m
2 2 2
S _ 47 1000 _ 10’7 1000 _ ;o mm
T4 s, 4 180 m

Calculation of the direction of the crack based on the tensor of the reserve forces.

The tensor of the applied forces (effect) based on the internal forces in the quasi-permanent
combination:

e B 0][E E][1143 a2s6]ky
““lo E| |E, E| 428 57.14]m °
E="ro 16 _qpg3 kN
=2 7014 m
m, g KN
=" 8 574N
27014 m
m, 6 KN
E =Coo 0 _ggek
22 T 014

The tensor of the resisting (vield) forces based on the resistance of the reinforcement:

RO |_|R R,I_3273 0 (KN
ol - | o 2182|m W
0 R, R, R, )
kN
A=a [, =6545-500=3273—
kN
A,,=a,, f=436.3:500=2182-—

_ 2 2 _ 2 (] 2 0)__ kN
R,=A,.cos’(§)+4,,cos (n)=327.3cos (0°) +218.2cos" (90 )_327'3H ,
R,=A4,.sin’*(&)+4,,sin’(7)=327.3sin*(0°)+218.2si 2(90")—2182kN

v g sn n)= .o s .~ SIn = . ? .

R,,=A,:cos(&)sin(&)+4,,cos(n)sin(n)=327.3cos(0°)sin (0°)+218.2 cos(90°)sin(90°)=

—o XN
m

pRY)
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The tensor of the reserve forces:

* * *
| 0. |7, Ty R, ny
r_— x| * *

0 r, r 7

R, R
where 7 is a scalar multiplier of the internal forces.

E.F

X xy

E_E

xy y

R —1rE, ny—rExy
ny—rExy Ry—rEy

9

Xy y

Yielding occurs (described by Gvozdiev [12]), when the smaller principal value of the reserve
force tensor is equal to zero:

*
r,=0

It gives the following equation based on the well known calculation method of the smaller
principal values of a tensor:

* * * * \2
* + - *
r,= rxzry _\/ rxzry) —I—I’xyz:O
., |R—rE+R —rE R—rE—~R+rE |
N R _\/ 5| T(R,=rE,)=0

This equation gives two solutions for the 7 scalar internal force multiplier. The smallest positive
r value has physical meaning. Without further detailed calculation the relevant » scalar load
multiplier is:

r=2.120

Based on this scalar value the reserve force tensor:

*:[r’; O]:l182.1 olilr;‘ r ]:[ 84.98 —90.86]k_N

(N
&

0 ] L 0 of |r r] [-9086 97.06 | m

The principal direction of the first principal reserve force gives the direction of the crack:

r=ry 182.1—84.98 o
— arctan ——~—arctan ~22-—9%2% __ 47 00
o= arctan . arctan —9086

Xy

Now we can calculate in this direction the crack width based on the standard formulas. The
internal forces and the reinforcement need to considered in the perpendicular direction of the
crack:

a,=a+90°=43°
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The effective reinforcement area in this direction:

2
mm

m

a,=a,:c08’(0aty—§ )+a,,cos’(ay—n)=654.5cos’ (43°—0°)+436.3 cos’(43°—90°)=553.0

The bending moment in the direction perpendicular to the crack direction:

_ 2 02 2 : _
mq =m,Cos Oyt m,sin” o+ 2m,,COS QS A =

= CcoS + Sin +2- CcOS Sin =138.26—
16)cos*43°+(8)sin”43°+2-(6) cos 43° sin 43° 1826k1jnm

The position of the neutral axis according to the uncracked section (Stadium I.):

2

E. 200 5 ta,a,d
=S —_=""_—6.667 : = =101.3
“=E, " 30 T Tt aga, mm

The moment of inertia (Stadium I.):

x; (h_x1)3 2 smm”
I,:?+f+aeaa"(d—x,) =6.844-10"— =

Concrete tensile stress (Stadium 1.) to check if the crack exist or not:

m (h=x,) 18.26-10°-(200—101.3) N
O 0= = - =2.63 —
’ I, 6.844-10 mm

> f .n=2.2MPa crack occurred.

The position of the neutral axis according to the cracked section (Stadium II.):

1 —et,a,(d hus: x,=31.92
xH?—aeaao( —xH) thus: x,=31.92mm

The moment of inertia (Stadium IL.):

X 31.92°

4
2 7 Mm
111=?+O‘eaa(,(d_x11) =

+6.667-0.553-(170—31.92)*=8.114-10 —

Rebar stress (Stadium I1.):

m, (d—x .10° _
— | //):6.66718.26 10 (17043.1.92):207_2 N
: I, 8.114-10 mm

pRL]



Verification Examples FEM-Design 18

Effective tensile rebar ratio:

a, a, . . .
Ppep=—"""=7—"= 0.3 = 0533 =035 009870
U ey ey 2.5(h—d) 2.5-(200—170) e
hoxy || 200-3192 | min}56.03
min 3 min 3 100
h 200
2 2 J

The concrete and rebar strain difference:

( fct,eff

Os,a”_ tm(l—l—aepp,eﬁ')
Ag:gsm_gcm:max ES =
GS a,
0.6 —%
ES
2.2
207.2—0.4- (1+6.667-0.00987)
0.00987 0.0005609
=max 200000 =max, =0.0006216
0.0006216
0.6.207.2
{ ™ 200000 J

The criterium of the spacing of the bonded bars that they are close to each other or not:

sp,=5(c+¢,/12)=5(25+10/2)=150 mm

The effective spacing of the bonded bars in the direction of the crack:

=142.0mm

o iml4_10°x14
P a, 0553

Now the maximum crack spacing:

sp<sp,, thus:

o, 10
=34¢4+0425k, k,——=3.4-254+0.425-0.8-0.5- =257.2
Sromax=3-%€ LRy 0.00987 fm
Thus the crack width:
We=S, e AE=257.2-0.0006216=0.1599 mm

Numerical results:

Wy ey =0.1559 mm
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Non-orthogonal reinforcement (0=75°between & and n)

The reinforcement is non-orthogonal and the ¢ direction concides with the local x direction. The
angle between the ¢ directional reinforcement and # directional reinforcement is ¢p=75°. Fig.
9.2.5.1.3 shows the applied reinforcements and the concrete covers. Thus &= 0°; 5 =75°.

[
[ [/ [/ ‘

777
/% / / - ' " ' §c”=30mm

@10/200=392.7 mm*/m
x¢

Figure 9.2.5.1.3 — The applied skew reinforcement for elliptic bending

©10/160=490.9 mm*’/m X €20 mm

SE=160mm

The applied reinforcement in the slab:

Only bottom reinforcement necessary (see Chapter 9.2.2 for further information).

@2 1000 10> 1000 mm’
= = =490.9
G TS, T 4 160

.7 1000 _10°7 1000
o4 s 4200

n

2
—39p 7M.
m

Calculation of the direction of the crack based on the tensor of the reserve forces.

The tensor of the applied forces (effect) based on the internal forces in the quasi-permanent
combination:

s |E OB E, =l114.3 42.86]k_N where
““lo E| |E, E| 4286 5714/ m °
13,6:'7;":%:114.3%N ,

Ey:%:ﬁ:ﬂm% ,

B, ==t 456K

The tensor of the resisting (vield) forces based on the resistance on the reinforcement:

R, 0 _[258.7 49.1 |[kN
0 R, 49.1 1832| m

Rx ny
R, R,

xy

= , Where
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A.=a,, fyk:490.9-500=245.5%

kN
A=, f=392.7:500=196.4-—

b

R,=A,.cos’(E)+4,,cos’(17)=245.5cos’(0°)+196.4 cosz(75°)=258.7k?N ,

RyzAsgsinz(g)+Asnsin2(n):245.55in2(0°)+196.4sin2(75°)=183.2kEN ,

R,,=A,:cos(&)sin(E)+4,,cos(n)sin(n)=245.5c0s(0°)sin(0°) +196.4 cos(75°) sin(75°)=
kN

=49.1— .
m

The tensor of the reserve forces:

* * *
| 0|_|r, 7y
r_ * * *

0 r, S

where r is a scalar multiplier of the internal forces.

Rx R Xy
R R

xy y

Ex Exy
E E

xy y

R—-rk . R —-rE,
R, —rE, R-rk,

= —7 =

b

Yielding occurs (described by Gvozdiev [12]), when the smaller principal value of the reserve
force tensor is equal to zero:

*
r,=0

It gives the following equation based on the well known calculation method of the smaller
principal values of a tensor:

* * * * \2
* + - *
ry= rxzry _\/ i”xz’”y) +rxy2=0
. |R—rE+R —rE R—rE.—~R+rE,\
ra= 2 _\/ s | HR,mrE, =0

This equation gives two solutions for the 7 scalar internal force multiplier. The smallest positive
r value has physical meaning. Without further detailed calculation the relevant r scalar load
multiplier is:

r=2.058

Based on this scalar value the reserve force tensor:

r*:[r*; 012[89.08 olilr: r:y]:[ 23.47 —39.11]k_N

0 r, 0 0| |rl #i| [-39.11 6561 |m

xy y

pAL]
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The principal direction of the first principal reserve force gives the direction of the crack:

I"*_V* —
a = arctan —— xzarctanwz—SQZOo
" —39.11

Now we can calculate in this direction the crack width based on the standard formulas. The

internal forces and the reinforcement need to considered in the perpendicular direction of the
crack:

a,=a+90°=30.8°

The effective reinforcement area in this direction:

a,=a,:cos’(ay—&)+a,,cos’ (cg—1)=490.9 cos’(30.8° —0°)+392.7 cos*(30.8°— 75°)=

2
=564.0 2112
m

The bending moment in the direction perpendicular to the crack direction:

_ 2 s 2 2 : _
M, =m,COS Qyt+m,Sin" ay+2m,,Co8 xS )=

=(16)cos*30.8°+(8)sin*30.8°+2+(6) cos 30.8° sin30.8°=19.18kNTm

The position of the neutral axis according to the uncracked section (Stadium L.):

hZ
—+a.a, d
E, 200 2 "
= =2 _-6.667 : = =101.3
“TE., 30 T Tt aga, mm
The moment of inertia (Stadium L.):
3 3
h_ 4
R U +a,a, (d—x,)=6.848-10"
3 3 ’ m

Concrete tensile stress (Stadium 1.) to check if the crack exist or not:

mg (h=x,) 19.18-10°-(200—101.3) N
= = _ =2.76 ——
’ I, 6.848-10 mm

> f .m=2.2MPa crack occurred.
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The position of the neutral axis according to the cracked section (Stadium II.):

"o a, (d—x,) thus: x,=32.19
xH?—aeaan x,) thus: x,=32.19mm

The moment of inertia (Stadium IL.):

3 3
111:%+O‘eaaﬂ(d—xu)2:32'19

4
+6.667-0.564-(170—32.19)°=8.253-10"
m

Rebar stress:

m, (d—x .10°- _
— | 11):6_66719.18 10 (170432.19):213_5 N
o I, 8.253-10 mm

Effective tensile rebar ratio:

a, a, . . .
L. 0.564 _ 0.564 __ 0564 . io0g
Qoo Mooy 2.5(h—d) 2.5-(200—170) |75
h—x, 200—32.19 | MIN{55094
min 3 min 3 100
h 200
2 2

The concrete and rebar strain difference:

Ae=¢g,,— &, =Mmax E =

213.5-0.4—22 _(1+6.667-0.01008)

0.01008
—max 200000 — max | 0-00060171 _ 6006405
135 0.0006405

200000

0.6
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The criterium of the spacing of the bonded bars that they are close to each other or not:
sp,=5(c+¢,/2)=5(25+10/2)=150 mm

The effective spacing of the bonded bars in the direction of the crack:

_¢inl4 10°x/4
sp= =

~139.3
a. 0564 oomm

Now the maximum crack spacing:
sp<sp, thus:

10

P _34. 080510
=3.4:25+0.425:0.8:0.5 5o

1 =34 H0.425 kK,
’ p.é

=253.7mm

Thus the crack width:
W, =5, . Ae=253.7-0.0006405=0.1625 mm
Numerical results:

Wy ey =0.1579 mm
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Figure 9.2.5.1.4 — The crack width [mm
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the direction of the cracks at the bottom

Fig. 9.2.5.1.4 shows the FEM-Design results.
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The difference between the hand and FEM-Design calculations is less than 3%.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/9.2.5.1 Crack width calculation in a
slab with elliptic bending and skew reinforcement.str
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9.2.5.2 Hyperbolic bending
The SLS moments in the slab in shell local system due to hyperbolic bending:

m_=+32kNm/m the resultant of the x directional normal stresses.
m, =—16kNm/m the resultant of the y directional normal stresses.

m =+12kNm/m the resultant of the x-y directional shear stresses.

Orthogonal reinforcement (9=90° between & and n)

The reinforcement is orthogonal and their directions concide with the local system (x=¢, y=n).
Fig. 9.2.5.2.1 shows the applied reinforcements and the concrete covers. Thus &= 0°;  =90°.

Ay 5, =120 mm

‘ — >N |

g ‘e . . . . ° §§

g | ¢ =20 mm

By ®10/60=1309 mm*m

g ‘

Y’ o . . o § c”=30 mm
3 — X, é: !

> D10/120=654.5 mm*/m
x¢

Figure 9.2.5.2.1 — The applied orthogonal reinforcement for hyperbolic bending

The applied reinforcement in the slab:

Top and bottom reinforcement are also necessary but in this case only in one direction (see
Chapter 9.2.2 for further information).

Bottom:
2 2 2

wor_ @27 1000 _ 10”7 1000 mm
=== = =1309
GETT T 4 60 m
a;y=0

Top:

at=

o 27 1000 _10°7 1000 _ ., o mm’
T4 s 4 120

n

Crack width on bottom:

Calculation of the direction of the crack based on the tensor of the reserve forces.
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The tensor of the applied forces (effect) based on the internal forces in the quasi-permanent
combination:

_|E O|_[E E,|_[2285 8571 ]kN .
=10 E| |E, E,| 8571 —1143]m ~
m, _ 32 kN
E=—=2%-2086-~
T Toaa B,
m, —16 kN
E=—=—2—_1143 |
YTz 0.14 m
m, 12 kN
==L 8571
Tz 0.14 m

The tensor of the resisting (yield) forces based on the resistance on the reinforcement:

R, O|_.|R, R,|_[6545 0 |kN
R= = = — , Where
- |0 R, |R, R, 0 625|m
0 kN
Asg=a’;,gfyk=1309-500:654.5H .

If there is no reinforcement on bottom in the other direction we need to consider somehow the
tensile resistance of the concrete, because this may effect the relevant direction of the crack.

kN
Asr]:cfctm:2522:625? .

R,=A4,.cos’(§)+4,,cos’(n)=654.5c0s’(0°) +62.5 cos’(90°) =654.5 kN

R,,=A,:cos(&)sin(E)+A4,,cos(n)sin(n)=654.5cos(0°)sin (0°)+62.5cos (90°)sin (90°)=

—o XN

m

The tensor of the reserve forces:

* * *
|7 0|_|r., ry
=S5 0 * * k

r, Fo T,

where 7 is a scalar multiplier of the internal forces.

Rx R Xy
R R

xy y

E._F

X Xy

E_E

xy y

R—-rE. R —-rE,
R, —rk, R-—-rk,

Yielding occurs (described by Gvozdiev [12]), when the smaller principal value of the reserve
force tensor is equal to zero:

*
r,=0
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It gives the following equation based on the well known calculation method of the smaller
principal values of a tensor:

* * * * \2
* + - *
r,= rxzry _\/ rxzry) -I—nyZ:O
., |R—rE+R —rE R~rE —R+rE |
ra= 2 _\/ 5| HR,—rE,) =0

This equation gives two solutions for the 7 scalar internal force multiplier. The smallest positive
r value has physical meaning. Without further detailed calculation the relevant » scalar load
multiplier is:

r=2.337

Based on this scalar value the reserve force tensor:

|0l fason o] [r #|l] 1205 —2003]kN
=10 0 0] [~ #||-2003 3296 |m

xy y

&

The principal direction of the first principal reserve force gives the direction of the crack:

I"*_V* —
a=arctan Il’iy ~=arctan %:_58.710

Now we can calculate in this direction at the bottom the crack width based on the standard
formulas. The internal forces and the reinforcement need to considered in the perpendicular
direction of the crack:

oy =0 +90°=31.29°

The effective reinforcement area in this direction:
bot bot 2 bot 2
a,, =d,, COoS (a0—§)+asy cos (ao—n)z

2

=1309cos’(31.29°—0°)+ 0 cos*(31.29°—90°) =955.9 man

der=ayl cos’(ay=&)+dy) cos’(ag—n)=

2

=0cos’(31.29°—0°)+654.5cos*(31.29°~90°) = 186.8 mr;n
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The bending moment in the direction perpendicular to the crack direction:

m, =m, Ccos a0+m sin” oo+ 2m, ,COS Cpsina y=

=(32)c0s’31.29°+(—16)sin>31.29°+2-12 cos 31.29°sin 31.29° =29. 70 KNm.

m

The position of the neutral axis according to the uncracked section (Stadium I.):

h2
—+a, ab‘”dt+a at"pd

E. 200 2
= 2 -6.667 ; x,= —101.9
%e Ecm 30 A h+a abm—i-a amp mm

The moment of inertia (Stadium L.):

3 3
]1:%4_%4_05 b‘”(d%. x, ) +a, amp(x —d',)*=17.070-10

smm

Concrete tensile stress (Stadium 1.) to check the crack exist or not:

me,(h=x;) 29.70-10*-(200—101.9) _ N

o. = 5 > =2.2MPa crack occurred.
! I 7.070-10 mm

ctm

The position of the neutral axis according to the cracked section (Stadium I1.):

In case of this hyperbolic bending the applied reinforcements are only in one direction on one
side, thus we considered the real effective height of the tensile and compressed bars instead of
the average values which ones were introduced at the beginning of this chapter.

x ’
X 21—|—Ol ato(:f(xu dn):aeaZit(dg—xIJ thus: x[[:41_13mm

The moment of inertia (Stadium II.):

3
III_%+ e l:zm(ds xl[) ta amp(xn_dlny:

_41.13°

8mm

+6.667-0.9559-(175—41.13 )’ +6.667-0.1868-(41.13—35 ' =1.3745-10 -

Rebar stress:

mg, d —X . 3. —
o ma, M) (1297010 (175-4113) 0 o N
’ Ly 1.3745-10 mm
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Effective tensile rebar ratio:

bot
a

bot

0.9559

0.9559

0.9559

Q, g=——=—= = = =0.01805
P a, g ey 2.5(h—d.) 2.5(200-175)] [ 625
h—x, 200—41.13 | mMng52.96
min 3 min 3 100
h 200
2 L 2
The concrete and rebar strain difference:
\
fct,eﬂ
Os,an_kt pp,ejf (1+aepp,eff)
AEe=¢€gy,— €, =Mmax E, =
0.6 —=
ES
1
2.2
192.9-0.4- (1+6.667-0.01805)
0.01805 0.0006914
=max 200000 =max; =0.0006914
0.0005787
0.6- 192.9
{ 200000 }

The criterium of the spacing of the bonded bars that they are close to each other or not:
sp,=5(cs+¢,/12)=5(20+10/2)=125mm

The effective spacing of the bonded bars in the direction of the crack:

il _10°/4
70,9559

=82.16 mm

0

Now the maximum crack spacing:
sp<sp,, thus:

10
0.01805

9

Zm =162.2mm

=3.4-20+0.425-0.8-0.5-

=3.4c.+0.425k k

SV, max

Thus the crack width:
W=, e Ae=162.2:0.0006914=0.1121 mm

Numerical results:
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between the hand and FEM-Design calculations

Fig. 9.2.5.2.2 shows the FEM-Design res

The difference

is less than 1%.
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Crack width on top:

Calculation of the direction of the crack based on the tensor of the reserve forces.

The tensor of the applied forces (effect) based on the internal forces in the quasi-permanent
combination:

| B O|_|E. E, :[—228.5 —85.71]k_N where
““lo | |E, E | |-8571 1143 |m °
Exz_:“:a%z—zzsﬁk% ,
Ey:_’:y::;%:+ll4.3k§N ,
Exy=_’:"y—(;ii=—85.7lk§N

The tensor of the resisting (yield) forces based on the resistance on the reinforcement:

R, 0 R, R,|_[625 0 |kN
0 R, |R, R,| [0 32725|m

xy

, Where

o kN
A,,=d” [, =6545500=327.25~~ .

m

If there is no reinforcement on top in the other direction we need to consider somehow the
tensile resistance of the concrete, because this may effect the relevant direction of the crack.

kN
Asgchctm:2522:625? .

R,=A4,.cos’(§)+4,,cos’(n)=62.5c0s*(0°)+327.25 cos’ (90°) =62.5 kEN ,

>

R,=A,.sin’(§)+4,,sin’(1)=62.5sin(0°)+327.25 sin2(90°)=327.25%

R,,=A,:cos(&)sin(E)+4,,cos(n)sin(n)=62.5cos(0°)sin (0°)+327.25cos (90°)sin (90°)=

—o XN

m

The tensor of the reserve forces:

* * *
|7 0|_|r., ry
=S5 0 * * k

r, Fo T,

where 7 is a scalar multiplier of the internal forces.

E.F

X Xy

E_E

xy y

Rx R Xy
R R

xy y

R—-rE. R —-rE,
R, —rk, R-—-rk,

Yielding occurs (described by Gvozdiev [12]), when the smaller principal value of the reserve
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force tensor is equal to zero:

*
r,=0

It gives the following equation based on the well known calculation method of the smaller
principal values of a tensor:

* * * * \2
* + - *
r,= rxzry _\/ rxzry) -I—nyz:O
2
« [R—rE +R —rkE R—rE —R +rkE
r,= 5 L = —\/ > L = +(ny—rExy)2=O

This equation gives two solutions for the 7 scalar internal force multiplier. The smallest positive
r value has physical meaning. Without further detailed calculation the relevant » scalar load
multiplier is:

r=2.291

Based on this scalar value the reserve force tensor:

a|roo|_[esta o] [ r|_[586.0 196.4]KN
0 7 0 0 196.4 65.39| m

— * *

y

The principal direction of the first principal reserve force gives the direction of the crack:

r=r, 651.4—586.0 o
— arctan ——=arctan 227 _2%0Y _ 19 47
o= arctan . arctan 1964

Xy

Now we can calculate in this direction at the bottom the crack width based on the standard
formulas. The internal forces and the reinforcement need to considered in the perpendicular
direction of the crack:

= +90°=108.4°

The effective reinforcement area in this direction:

a];(;t=a]§;t cosz(ao—§)+aﬁ;t0052(ao_’7):

2
= 13090052(108.4°—0°)+0cos2(108.4°—900)=130.4%

top ___top

a, =a cosz(a0—§)+ a’fyp cosz(ao—n)z

2
—0cos’(108.4°—0°)+654.5 cos(108.4°—90°) =589.3 m;’
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The bending moment in the direction perpendicular to the crack direction:

m, =m, Ccos a0+m sin” oo+ 2m, ,COS Cpsina y=

=(32)cos’108.4°+(—16)sin’108.4°+2-12 cos 108.4°sin 108.4°=—18.41 KNm

m

The position of the neutral axis according to the uncracked section (Stadium I.):

h2
—+a, ab"’d ta, a’"pd

E. 200 2
= 2 —6.667 = =100.9
%e Ecm 30 i h+a abm—i-a amp mm

The moment of inertia (Stadium L.):

3 3
h_
1,:%+%+aea:f(d

smm

X +a,a)(x,—d:)’=6.880-10

n

Concrete tensile stress (Stadium 1.) to check the crack exist or not:

—m, (h—x 10 -
o = ”( ’): 18.41-10°-(200 - 100'9):2_65 N >> fum=2.2MPa crack occurred.
o I, 6.880-10 mm

The position of the neutral axis according to the cracked section (Stadium I1.):

In case of this hyperbolic bending the applied reinforcements are only in one direction on one
side, thus we considered the real effective height of the tensile and compressed bars instead of
the average values which ones were introduced at the beginning of this chapter.

e a,

X '
xH%—'—a abm(x11_d§) a amp(dn_xll> thus: x,=32.12mm

The moment of inertia (Stadium II.):

IU_%"' mp(dn_xll) ta abm(xll_d,§)2:
32.12° > ;mm*
== +6.667-0.5893-(165—32.12)+6.667-0.1304-(32.12—25)*=8.046-10 -

Rebar stress:

—mg (d,~x,) 18.41-10°(165—32.12) N
e T 6,667 _ =202.7—
% 1, 8.046-10 mm
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Effective tensile rebar ratio:

top top

a

0.5893

0.5893

0.5893

0, g=—=—t= = = =0.01053
P Uy Doy 2.5(h—d,) 2.5-(200-165)]  [87.5
h—x, 200—32.12 min: 55.96
min 3 min 3 100
h 200
P 2
]
The concrete and rebar strain difference:
fc Jefff
O-s,a(,_ktm(l-i_aeppveﬂ)
Ae=¢g,,— €, =max E, =
0.6 —=
ES
2.2 ’
202.7-0.4-—=5—{146.667-0.01053)
0.01053 0.0005663
=max 200000 =max =0.0006081
0.0006081
0.6. 202.7
200000 J

The criterium of the spacing of the bonded bars that they are close to each other or not:
sp,=5(c,+9,/12)=5(30+10/2)=175 mm

The effective spacing of the bonded bars in the direction of the crack:

o iTl4_10°x/4

- —1333
bt 0.5893 mm

0

Now the maximum crack spacing:
sp<sp, thus:

10
0.01053

A

,——=3.4-30+0.425-0.8-0.5-
Pp.er

Sy =3¢, +0.425 k k —263.4mm

Thus the crack width:
wiP = e maxr A €=263.4-0.0006081 =0.1602 mm

Numerical results:
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W;CO’PFEM = 0. 1602 mm

D P P B
T ]
e e T
e e T
T T
T T
I P e |
I P |
S |
0 AN . o - ST
\,CQ" e

cggl

Figure 9.2.5.2.3 — The crack width [mm] and the direction of the cracks at the top

Fig. 9.2.5.2.3 shows the FEM-Design results.
The difference between the hand and FEM-Design calculations is 0%.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/9.2.5.2 Crack width calculation in a
slab with hyperbolic bending and orthogonal reinforcement.str
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Non-orthogonal reinforcement (0=75°between & and n)

The reinforcement is non-orthogonal and the ¢ direction concides with the local x direction. The
angle between the ¢ directional reinforcement and # directional reinforcement is ¢p=75°. Fig.
9.2.5.2.4 shows the applied reinforcements and the concrete covers. Thus &= 0°; 5 =75°.

Ay S =90 mm
g >y
/ / / & | D10/60=1309 mm*/m | €20 mm
i
/ / / wn” . ° . . § c'l=30 mm
77—, e
9 o 1
> | ®10/90=872.7 mm’/m
x,¢
Figure 9.2.5.2.4 — The applied skew reinforcement for elliptic bending

The applied reinforcement in the slab:

Top and bottom reinforcement are also necessary but in this case only in one direction (see
Chapter 9.2.2 for further information).

Bottom:
afg,:q)i:r 1(;(;02 10;71 1280:1309 mm’
afffzo
Top:
a7 =0
o @27 1000 _10°7 1000 _ ooy o mm’
4 s, 4 90 m

Crack width on bottom:

Calculation of the direction of the crack based on the tensor of the reserve forces.

The tensor of the applied forces (effect) based on the internal forces in the quasi-permanent
combination:

_|E O |_|E. E,|_[2285 8571 [kKN .
= |0 E)| |E, E,| [8571 -1143 ’
m, _ 32 kN
E =—=—2=2286— ,
oz 0.14 m
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m, —16 kN

E=—2="2__11432 |
’Tz 014 m
my 12 kN
E =—2=—2 28571~ |
vz 014 m

The tensor of the resisting (yield) forces based on the resistance on the reinforcement:

R, 0 _|6545 0 kN
0 R, 0 625|m

Rx ny
R R

xy y

= , Where

o kN
Ae=al f =1309-500=6545-— .

If there is no reinforcement on top in the other direction we need to consider somehow the
tensile resistance of the concrete perpendicular to the rebars, because this may effect the relevant
direction of the crack.

kN
As(§+90”):c'fctm:25'2'2:62'5E >
R.=A_.cos’(E)+4 (E4+90°)=654.5cos’(0°)+62.5 2(90")—6545kN
=Agcos(§)+ o(e-+90) €08 &+ =654.5cos +62.5cos =654.5-—,
) . 0 . 0 . 0 kN
R,= A, sin"(§)+4, ., sin°(E+90°)=654.55in°(0°)+62.55in"(90 )=62.5H ,
ny:Asgcos({;‘)sin({f)+AS(§+900>C0S(§+90°)sin(§+9O°):
=654.5cos(0°)sin(O°)+62.5cos(9O°)sin(900)20% .
The tensor of the reserve forces:
S r, 0 - r riy _| R R, _, E. E |_|R~-TrE R -TE,
— |0 | |r, | |R, R/| |E, E,| |R,~rE, R-rE |’

where 7 is a scalar multiplier of the internal forces.

Yielding occurs (described by Gvozdiev [12]), when the smaller principal value of the reserve
force tensor is equal to zero:

*
r,=0

It gives the following equation based on the well known calculation method of the smaller
principal values of a tensor:

* * * * \2
r.+r r.—r x2
2 y)_\/( 2 y) o =0

*

r,=
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This equation gives two solutions for the r scalar internal force multiplier. The smallest positive
r value has physical meaning. Without further detailed calculation the relevant » scalar load
multiplier is:

r=2.337

2

R—rE+R —rE
PRI, +(R,—rE,)=0

2

Rx—rEx—RwarEy
2

r,=

Based on this scalar value the reserve force tensor:

|0l fason o] [ #|l] 1205 —2003]kN
=10 0 0] |/ | |-2003 3296 |m

xy y

The principal direction of the first principal reserve force gives the direction of the crack:

r=r, 450.1—120.5 o
— arctan ——~=arctan 220~ <Y __ 587]
o = arctan . arctan _2003

xy

Now we can calculate in this direction at the bottom the crack width based on the standard
formulas. The internal forces and the reinforcement need to considered in the perpendicular
direction of the crack:

ap=a +90°=31.29°

The effective reinforcement area in this direction:

affotz alswg cos’ (ay—E&)+ aiff cosz(ao—n )=

2
mm

=1309cos’(31.29°—0°)+0cos’(31.29°—75°)=955.9 -

a=atcos’(ay—&)+a cos’(ay—n)=
2

=0c0s’(31.29°—0°)+872.7 cos*(31.29°~75°)=456.0 2

The effective internal forces in the direction perpendicular to the crack direction:
2 - 2 .
M, =m,Cos ay+m,sin” o, +2m,,cos aysina =

=(32)cos231.29°+(—16)sin231.29°+2-12cos31.29°sin31.29°=29.7okN—m

m
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The position of the neutral axis according to the uncracked section (Stadium 1.):

hz bot 10,
“ta.adAadld,
2200 g 667 ; x =2 "~ 101.3mm

30 h+a ab"t—i-a ay’

cm

The moment of inertia (Stadium L.):

h_ 3
1 —);I+( 3x,) +aea3fj(d,7—x,) +a,ay(x, —d',)’=17.150-10° m;ln

Concrete tensile stress (Stadium 1.) to check the crack exist or not:

me,(h—x;) 29.70-10°-(200-101.3) N
o 1, 7.150-10° " mm’

m=2.2MPa crack occurred.

The position of the neutral axis according to the cracked section (Stadium II.):

In case this of hyperbolic bending the applied reinforcements are only in one direction on one
side, thus we considered the real effective height of the tensile and compressed bars instead of
the average values which ones were introduced at the beginning of this chapter.

xez +a Cli;)f(xﬂ d ) a abOt(dE_xII) thus: x11:40.91mm

The moment of inertia (Stadium I1.):

3

1, _X3 ta bat(d,E_xH) ta amp(xll_dln)zz

_40.91°

81’1’11’[1

+6.667-0.9559-(175—40.91 ) +6.667-0.456-(40.91—35)*=1.3752-10° ——

Rebar stress:

m, (d:—x 10°- _
— (d 11):6.66729.70 10°(175 540.91)_ N
o Iy 1.3752-10 mm
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Effective tensile rebar ratio:

bot bot
a, a, ] ) _
p =fa G 09559 0.9559 _ 09559 o 0is03

U Neor 2.5(h—d;) 2.5:(200-175)| | 625
h—x, | 200-4091 | min{53.03
min 3 min 3 100

h 200

2 L 2

The concrete and rebar strain difference:

\

fct,eﬂ
k, s (I+a.p, )
=max E =

cm s

0.6

O J—

s, a,

Ae=¢ €

sm
s, a,

E

)

2.2
0.01803
200000
193.1

{ 0-6-300000

193.1-0.4- (1+6.667-0.01803)

=max

— max | 0-00069211_ 5406921
0.0005793

The criterium of the spacing of the bonded bars that they are close to each other or not:
sp,=5(cs+¢,/12)=5(20+10/2)=125mm

The effective spacing of the bonded bars in the direction of the crack:

il _10°/4
" 0.9559

0

=82.16 mm

Now the maximum crack spacing:
sp<sp,, thus:

¢, 10

P _3.4.2040.425-0.8-0.5- ~162.2
20, 0.01805 mm

=3.4c.+0.425k k

SV, max

Thus the crack width:
W=, e Ae=162.2:0.0006921=0.1123 mm

Numerical results:
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Crack width on top:

Calculation of the direction of the crack based on the tensor of the reserve forces.

The tensor of the applied forces (effect) based on the internal forces in the quasi-permanent
combination:

| B O|_|E. E, :[—228.5 —85.71]k_N where
““lo & |E, E | |-8571 1143 |m °
Exz_:“:a%z—zzsﬁk% ,
Ey:_’:y::;%:+ll4.3k§N ,
B2 g5y KN

The tensor of the resisting (yield) forces based on the resistance on the reinforcement:

_|{Ri O |_| R, R,|_|87.55 9348|kKN .
=10 R |R, R [9348 4114]m ~°

0 kN
A,,=al; W =872.7-500=436.4-— .

If there is no reinforcement in the other direction on top we need to consider somehow the

tensile resistance of the concrete perpendicular to the rebars, because this may effect the relevant
direction of the crack.

kN
AS(W+90”): ¢ f m=25-2.2 262.5E

3

b

[ 0o 0 kN
R.=A,, . 08 (n+90°)+ 4, cos’(17)=62.5cos’ (165°) +436.4 cos’( 75 )=87.55?

RyzAs(n+900)sin2(n+90°)+Am sin’(1)=62.5sin’(165°)+436.4sin’(75°)=41 1.4%N

b

Ry,= A, . oc08 (1+90°)sin (17 +90°)+ 4, cos (17)sin (17 )=

=62.5c0s(165°)sin (165°)+436.4cos(75°)sin(75°)=

=93.48g .
m

The tensor of the reserve forces:

* * *
|7 0_[r. 7ryl|o
= 0 * * *

r| Ty Ty

R R

X Xy

Ex Exy
E, E,

xy

R—-rE. R —-rE,
R,—rE, R-rkE,

-r

xy y
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where 7 is a scalar multiplier of the internal forces.

Yielding occurs (described by Gvozdiev [12]), when the smaller principal value of the reserve
force tensor is equal to zero:

*
r,=0

It gives the following equation based on the well known calculation method of the smaller
principal values of a tensor:

* * * * \2
* + - *
r,= rxzry _\/ rxzry) —I—nyz:O
., |R—rE+R —rE R—rE —~R+rE |
o 2 _\/ 5| HR,—rE, ) =0

This equation gives two solutions for the 7 scalar internal force multiplier. The smallest positive
r value has physical meaning. Without further detailed calculation the relevant » scalar load
multiplier is:

r=2375

Based on this scalar value the reserve force tensor:

{07702 o)_{r; i, |_[6302 297.0|kN
=10 0 0| [+ | 12970 140.0| m

xy y

The principal direction of the first principal reserve force gives the direction of the crack:

a =arctan r;_ri =arctan w
r 297

Xy

=25.24°

Now we can calculate in this direction at the bottom the crack width based on the standard
formulas. The internal forces and the reinforcement need to considered in the perpendicular
direction of the crack:

ap=a+90°=115.2°

The effective reinforcement area in this direction:
al;ztzals"g cosz(a0—§)+a§ff cos’(atg—n)=
2
= 13090052(115.2°—0°)+Ocos2(115.20—750)2237.3%

ag'=aylcos’ (oo &)+dy) cos’(ag—1)=
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2

=0cos’(115.2°—0°)+872.7 cos*(115.2°—75°)=509.1 2

The effective internal forces in the direction perpendicular to the crack direction:

m,, = n, cos ao-i—m sin” ag+2m, ,COS Ly sina y=

=(32)c0s’115.2°+(—16)sin’115.2°+2-12cos 115.2°sin 115.2°=—16. 54 KNm

m

The position of the neutral axis according to the uncracked section (Stadium L.):

2
E. 200 %+ae f,”’d +a,a,d,
a,=——="—=0.667 ; x,= — p =100.5mm
E. 30 h+a,a, +a,a;”

The moment of inertia (Stadium L.):

3
0 0 mm
]1:?+T+aeaflf(dn—x,) +a,ay'(x;—d :)’=6.899-10" —— -
Concrete tensile stress (Stadium 1.) to check the crack exist or not:
—my (h—x -10°- —
Opou= ”( I)= 16.54-10(200 5 100.5) =2.39 N >> f .m=2.2MPa crack occurred.
o I, 6.899-10 mm

The position of the neutral axis according to the cracked section (Stadium II.):

In case of this hyperbolic bending the applied reinforcements are only in one direction on top
side, thus we considered the real effective height of the tensile and compressed bars instead of
the average values which ones were introduced at the beginning of this chapter.

Xy :
Xy "va,al (x,—d )=a,a(d,~x,) thus: x,=30.02mm

The moment of inertia (Stadium IL.):

bm(xﬂ_dlf)z:

S

I,==+a,a)(d,~x, ) +a,a

_30.02° 7mm*

+6.667-0.5091-(165—30.02)°+6.667-0.2373-(30.02—25)*=7.090-10" ——
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Rebar stress:

-m, (d,—x .10°. _
— (d, 11):6.66716.54 10 (165430.02)2209_9 N2 ;
o ]11 7.090-10 mm
Effective tensile rebar ratio:
top top
D)= Qo) _ Qa, _ 0.5091 _ 0.5091 __ 0.5091 —0.008985
Toay Doy 2.5(h—d,) (2.5-(200—165) | 875
h—x, 200—-30.02 | MIN}56.66
min 3 min 3 100
h 200
2 L 2
The concrete and rebar strain difference:
fct,e/f
Os,a,,_ktm(l—'—aepp,eﬁ)
A‘9:‘?sm_‘gcm:rna'X ES =
0.6 —=
ES
2.2
209.9— 0.4 —=~_.(1+6.667-0.008985]
0.008985 0.0005305
=max 200000 =max - =0.0006297
0.0006297
0.6- 209.9
{ 200000

The criterium of the spacing of the bonded bars that they are close to each other or not:

sp,=5(c,+¢,/12)=5(30+10/2)=175 mm

The effective spacing of the bonded bars in the direction of the crack:

=154.3mm

o tiTl4 _10°7/4
P=" b 05091

0

Now the maximum crack spacing:
sp<sp,, thus:

¢

:34cn+0425 klkzm

Sr, max

263
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Thus the crack width:
wif= S max A €=263.4-0.0006297=0.1834 mm
Numerical results:

Wi pey=0.1827mm

ol
O Pl 2
O P ©
S
O
P PP
OO
3 ‘\’%7,’1 S
) s
e el
A
\/\‘g;/////////

Figure 9.2.5.2.6 — The crack width [mm] and the direction of the cracks at the top

Fig. 9.2.5.2.6 shows the FEM-Design results.
The difference between the hand and FEM-Design calculations is less than 1%.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/9.2.5.2 Crack width calculation in a
slab with hyperbolic bending and skew reinforcement.str
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9.2.6 Punching calculation of a slab
In this section we will check five different types of punching reinforcement:

bended bar, circular stirrups, open stirrups, stud rail, PSB stud rail.

Inputs:
Concrete
Concrete characteristic compressive strength fu=25 N/mm?
Plate height h =200 mm
Cover ¢ =20 mm
Partial factor of concrete ve=1.50

Reinforcement

x' direction

Reinforcing steel characteristic yield strength f = 500 N/mm?
Rebars Young modulus E =200 GPa
Partial factor of reinforcing steel vs=1.15
Longitudinal rebar diameter ox =20 mm
Distance between longitudinal reinforcements sx = 150 mm
Longitudinal bars effective distance dix =170 mm

y'direction

Reinforcing steel characteristic yield strength

fx = 500 N/mm?*

Rebars Young modulus E =200 GPa
Longitudinal rebar diameter ¢y =20 mm
Distance between longitudinal reinforcements sy =150 mm
Longitudinal bars effective distance diy =150 mm
Geometry
Plate width in x direction Ly=4.0m
Plate width in y direction L,=40m
Circle column diameter deotumn = 25 cm
Specific normal force in x direction Ny gg = 40 kN/m

Specific normal froce in y direction

nyea = 40 kN/m

Vertical surface total load

(JzEd = 25 kN/m2
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$20/150
$20/150 |
{ Lol
g ) [ L
S Al
I SRECY
C | — (] (] e
dcolumn = 25 cm

Figure 9.2.6.1 — The geometry, loads and the reinforcements

Fig. 9.2.6.1 shows the analyzed punching problem.

9.2.6.1 Bended bars
Inputs (see Fig. 9.2.6.1.1):

Reinforcement
Reinforcing steel characteristic yield strength fywk = 500 N/mm?
Bended bar diameter Oy = 14 mm
Partial factor of reinforcing steel vs=1.15
Bended bar distance s: = 120 mm
L2 v, NN\
ﬂ\ 0.4d = 60 mm
g = 25 €
850 mm
800 mm /o = 45° \__ 800 mm
610 mm
a=45° \_800mm
800 mm o =45° 800 mm
Figure 9.2.6.1.1 — The applied punching reinforcement in x direction (the same valid in y direction)
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The effective longitudinal reinforcement ratios:

$37 1000 207 1000 9,7 1000 20%7 1000
i, T R B 1)
PLa=Tg 1000 1701000 012 5 PTgG00 T 150-1000 00
py=min [Jipé,i)-;z,yl:mm[Jo.ngi 3.01396]:min{0.8.103212]: 0.01312
The average effective height of the longitudinal reinforcements:
d, +d
2 2
Concrete compression resistance
The column reaction:
Veg=L.L,q. ;=4425=400kN
The perimeter of the column:
uy=d 1 T =250-7=785.40mm
Because this column is an inner column the f is:
p=1.15
The specific shear force at uo:
Vs 400000 N
= =1.15 =3.66
V=P, 160-785.40 .
The concrete compression resistance:
25 N _ S 25
Ved, max=0-5V f ,4=0.5-0.54 15- 4.50 — where: v=0.6 ( 1 ~530 ): 0.6( 1 _E):O'M
Concrete compression utilization:
VEd 3.66
=——=81.35%
VRd ,max 4.5 ’

Utilization is less than 100% thus the slab can bear the acting shear force. Fig. 9.2.6.1.2 shows
the relevant results with FEM-Design. The results are identical with the hand calculation.

Shear reinforcement resistance
Punching perimeter at 2d distance from the edge of the column:

d

u1=2( column+2d 250

=2 T+2~160) a1=2796 mm

2
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The shear force at u; perimeter:

i
E_1 15 400000 =l.028l2

du, ~ 160-2796 mm

V=P

Modifying factors for concrete shear resistance:
Crpc=—5—==7=0.12 ; k,=0.1

Average normal stress in the concrete:

n " 40000, 40000
x,Ed y, Ed
+ 1000-200 ~ 1000-200
o, =min O ut0y 1000/ " 1000/ | _ i : o2 N2
0.2==
020 15
200 200
k=min| 1 F{ =" = min 1+\% :mm[z.zlz]:z
2 2
Vmin:0'035k]'5 f2k5=00352152505:()495 N -
mm

The shear resistance of concrete:
1

+klacp=max[0.12-2-(100-0.01312-25)3 +0.1-0.2=

1

VRa,.—MmMax CRd,ck(looplfck)g A
Vmin o
—max|0-768140.1.0.2=0.788
0.495 mm

We need to check if we need any punching reinforcement or not:

Ve 1028\ a0so 10

Veae 0.788

Thus we need punching reinforcement.

Bended bars area in the u; perimeter:

2 2
‘pbj” —4 144” =615.75 mm’

A,=4

Effective tensile strength of the bended bars:

i 1 i 500

YW

fymer=min{__di=min| " |=min 1-15160 =min[432‘;gg}=29o—Nz
0y 250+ 250+~ mm
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The punching reinforcement resistance:

d 1 . 160 1 . N
=15—4 —_— =1.5——615.75290 —————sin 45°=0.564
de,sw g swfy,sw,eﬁuld Sin & 120 7796160 sin mm2

r

Punching shear resistance:

Vg o= min| 077 Vas et Vag ow | = min | 0.75-0.788+0.564]_ 155 N
' 1.5-0.788 mm

kmwc VRa NG
Punching shear resistance utilization:

Vi 1.028
=—2%_g8.98¢
Ved o 1.155 o

Fig. 9.2.6.1.2 and the table below shows the relevant FEM-Design results.

Concrete Shear Concrete shear
compression reinforcement
Hand calculation 4.5 N/mm? 1.155 N/mm? 0.788 N/mm?
FEM-De§1gn 4.5 N/mm? 1.18 N/mm? 0.79 N/mm?
calculation
Difference 0.00% 2.10 % 0.20 %

The differences between the numerical and hand calculations are less than 3%.
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Figure 9.2.6.1.2 — The punching detailed results in FEM-Design
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9.2.6.2 Circular stirrups
Inputs (see Fig. 9.2.6.2.1):

Reinforcement
Reinforcing steel characteristic yield strength fywk = 500 N/mm?
Circular stirrup diameter Ostirrp = 10 mm
Stirrup height hy =120 mm
Stirrup width W =s,= 120 mm
Partial factor of reinforcing steel vs=1.15

610

IO 0o, oo
S ﬁ 0.4dz60‘

Figure 9.2.6.2.1 — The applied punching reinforcement

Concrete compression resistance

The calculation and the results are identical with the relevant part of the former chapter (see
Chapter 9.2.6.1).

Shear reinforcement resistance

The results of the shear resistance of the conrete without punching reinforcement are identical
with the relevant part of the former chapter (see Chapter 9.2.6.1).

Thus it means that we need punching reinforcement.
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Punching perimeter at 2d distance from the edge of the column:

250

T=2 T+2-160)7r=2796 mm

dcolumn
u,=2| =" +2d

The area of the 12 stirrups at the u, perimeter (see Fig. 9.2.6.2.1):

2' 2
A, =12 Lume 15 107

o 0 794248 mm’

Effective tensile strength of the stirrups:

o S ok 500
W
fy,swleﬁ:min 550 4 t=min s J =min 1.15160 =min{434'78}=290£2
0y 250+ 250+-—— mm
4 4
The punching reinforcement resistance:
d 1 160 1 N

=15—4 ——sina=1.5—-942.48-290 —————sin90 °=1.222 ——
de,sw S swfy,sw,eﬁruld Sin & 120 2796160 Sin mm2

r

Punching shear resistance:
Vg o= min| 72 Ved etV ri o | = in| 0.75-0.788+ 12221 185 N2
' 1.5-0.788 mm

max de ,C

Shear reinforcement utilization:

Vie  1.028
=-——22_86.97°
Ved o 1.182 o

Fig. 9.2.6.2.2 shows the relevant FEM-Design results.

Concrete Shear Concrete shear
compression reinforcement
Hand calculation 4.5 N/mm? 1.182 N/mm? 0.788 N/mm?
FEM-Design 4.5 N/mm? 1.18 N/mm? 0.79 N/mm>
calculation
Difference 0.00% 0.00 % 0.20 %

The differences between the numerical and hand calculations are under 0.5%.
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Figure 9.2.6.2.2 — The punching detailed results in FEM-Design
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9.2.6.3 Open stirrups
Inputs:
Reinforcement
Reinforcing steel characteristic yield strength fywk = 500 N/mm?
Open stirrup diameter Oos = 4 mm
Stirrup height sy = 160 mm
Stirrup width sy = 80 mm
Partial factor of reinforcing steel vs=1.15
=

80

s
A

70

1.10 m

<
g

Figure 9.2.6.3.1 — The applied punching reinforcement

Concrete compression resistance
The calculation and the results are identical with the relevant part of the former chapter (see

Chapter 9.2.6.1).

Shear reinforcement resistance
The results of the shear resistance of the conrete without punching reinforcement are identical
with the relevant part of the former chapter (see Chapter 9.2.6.1).

Thus it means that we need punching reinforcement.

Effective stirrup area:

2 2
¢OS]T 24 -7T

4 4
a =

" 5.5, 160-80

2
=0.001963
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Effective tensile strength of the open stirrups:

o I ok 500
YW
fy sw eﬂ:min d (= min s =min L.15 =min 434.78 =290 —N 2
o 250+Z 250+i 250+@ 290 mm
4 4

The punching reinforcement resistance:

oo sin@ =1.5-160-0.001963-290 ——sin 90 °=0.8539
d 160 mm

de,sw: 15 d aswf
Punching shear resistance:

de,cs=minl0'75 de,C+de,SW]=min[0.75~0.788+ 0.8539]_1 18y N_

1.5-0.788 mm

max de @
Open stirrups utilization:

Ved 1.028:86 97

Via oo 1.182

Fig. 9.2.6.3.2 shows the relevant FEM-Design results.

Concrete Shear Concrete shear
compression reinforcement
Hand calculation 4.5 N/mm? 1.182 N/mm? 0.788 N/mm?
FEM-Design 4.5 N/mm? 1.18 N/mm® 0.79 N/mm?
calculation
Difference 0.00% 0.00% 0.20 %

The differences between the numerical and hand calculations are under 0.5%.
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Figure 9.2.6.3.2 — The punching detailed results in FEM-Design
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9.2.6.4 Stud rail general product
Inputs:

Reinforcement

Reinforcing steel characteristic yield strength

fywk = 500 N/mm?

Stud rail diameter ¢0s =10 mm
Stud rail distances sr= 120 mm
Stud rail number on one circle n=16 pcs
Partial factor of reinforcing steel vs=1.15

2
LR

i

1.10 m

o

00

7

1.10 m

s

s, =120mm

Concrete compression resistance

The calculation and the results are identical with the relevant part of the former chapter (see

Chapter 9.2.6.1).

Shear reinforcement resistance

The results of the shear resistance of the conrete without punching reinforcement are identical

with the relevant part of the former chapter (see Chapter 9.2.6.1).
Thus it means that we need punching reinforcement.
Punching perimeter at 2d distance from the edge of the column:

d

u1=2(7a’21“m"+2d 250

r=2 T+2-160) T =2796 mm

The area of the 16 stirrups at the u, perimeter (see Fig. 9.2.6.4.1):
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2 2
1627 16107 _ 56 mm?

A
sw 4 4

Effective tensile strength of the open stirrups:

fywd nyk 500 N
fy‘sw’eﬂzmin J t=min s J =min LIS =min[434'78}=290—2
250+Z 2504 % 250+@ 290 mm
4 4
The punching reinforcement resistance:

d 1 . 160 1 . N

=15—4 ,— =1.5——1256-290 —————sin90 °=1.628 ——

de,sw s, swfy,sw,e/f u,d S« 120 2796160 Sin mm2

Punching shear resistance:

1.5-0.788 mm®

de’cs:minlOJSde’C+de,swl=min[0.75~0.788+1.628 11N
max de,c

Stud rail utilization:

Ve _1.028 o o

Via o 1.182

Fig. 9.2.6.4.2 shows the relevant FEM-Design results.

Concrete Shear Concrete shear
compression reinforcement
Hand calculation 4.5 N/mm? 1.182 N/mm? 0.788 N/mm?
FEM-De§1gn 4.5 N/mm? 1.18 N/mm? 0.79 N/mm?
calculation
Difference 0.00% 0.00% 0.20 %

The differences between the numerical and hand calculations are under 0.5%.

278




FEM-Design 18

Verification Examples

MO - WUWIN 6270 = PHA 5 WwuyN p2'0 = "3A

(£v'9)  ,WWNBLO=020 0L0+(670", (0062 LELO'D-00L) 00 L0 )xew =

=%y, 'y +A Ui ,mtﬁd Mooy .u.vmouxm_t RN

_ . 091-806€  _P-"On 53
w = = -

(88°0)  MWIN VL0 =7 o6mpe ST =PIy g -

PEOT, 107

€'¥'9 :1'} Hed - 82UR)SISal 1BaYS 3}810U0D

18 [%] uonezinn
gt | Lwuyn] ¥ P
gort | [Nl ™A

620 LWwNI®PA

£0'L [y P3n

6LZ [w]n
091 [wuw] p
gL'l [d
L6'66€ [Nl 3
o0ze [ww]isig

—

X8apu| Jejawusd

051
LUUWYN 0052
LuwyN €802
JUWN £9°9L

ww 00002

(OPHp Xy SR, L TP 6 YUl = P PHA

_~ _ __ _
(0)uis ulp_.:m sy ,,m<w gL ="

p-'n
EPN ="
€79 11} Hed - 92UB)SISal JUSWADIoHIDL JBIYS

(8e9)

MO -(€6'9) MW/ 057 ="""Pr 5 wuyN 29°¢ ="

MIUWN 0GP = 29°0) - $6°0- G0 ="4-A- G0 ="

0oL -¥8, _ p-°n _pa,

(8e'9) o= S =
CVZ0B66E - GLL 073, g

JUW/N L9°E =

PEOT, 1D
£1'9 11'| Hed - aouejsisal uoissaidwod aje1auon

[E3
(D9/0Z 1 XZ/09)09E/E-091/01-BO0SEXI |
oLk

meu_
Ee]

4
.m_mm__.Sm_uou—

Un'pa,

E

}
0€£/620

0z k

suoljeuIqwod peo| JO WNWIXew
L(s°9)'nd

Figure 9.2.6.4.2 — The punching detailed results in FEM-Design
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9.2.6.5 Stud rail PSB product according to ETA-13/0151

Inputs:
Reinforcement
Reinforcing steel characteristic yield strength fx = 500 N/mm?
Stud rail diameter ¢0s =10 mm
Stud rail distances sr= 120 mm
Stud rail number on one circle n =8 pcs
Partial factor of reinforcing steel vs=1.15

1.10 m

1.10 m

Figure 9.2.6.5.1 — The applied punching reinforcement, first stud from the column face: 60 mm

Concrete shear resistance

The perimeter of the column:
u,=d 1 =250-7r=785.40mm

column

Because this column is an inner column the f is:
p=1.15

The u; perimeter:

250

r=2 T+2~160) T=2796 mm

dculumn
u,=2| =4+ 2d

The effective longitudinal reinforcement ratios:
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927 1000 20° 7 1000 9,7 1000 20°7 1000
4 s, 4 150 _ 4 s, 4 150
PL=Tg 1000 © 1701000 0125 PT 600 T 150-1000 000
VOILPL v0.01232-0.01396 0.0131
0, =min 0.02 =min 0.02 =min{ (.02 =0.0131
0.5f il fa 0.5-16.67/435 0.019
The average effective height of the longitudinal reinforcements:
d, +d
gy 170+150:160mm
2 2
The specific shear force at u;:
Vs 400000 N
= =1.15 =1.028
va=P, 160-2796 m?
Calculation of Cyq,:
%=%=4.91>4.0 therefore:
CRd,czoj/ﬁzo.lz ; k,=0.1
Average normal stress in the concrete: ’
, " 40000 n 40000
x, Ed vy, Ed
+ 1000-200  1000-200
2 2 25 mm
02—
0.2/ 1.5 J
200 200
k=min| 17" l=min{ 1T 750 :min[2'212]=2

2 2

d <600mm therefore:

N
2
mm

V,n=0.035k"" £%°=0.035-2"%.25"°=0.495

1

+klacp—max[0.12-2-(100-0.01312-25)3 +0.1-0.2=

1

CRd,c k ( 100 p, fck)g
v .

min

de’czmax

0.495
N
2
mm

—max |9-768140.1.02=0.788
0.495
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VeaZVieao »therefore punching reinforcement is needed.

The maximum of punching resistance with punching reinforcement (the example is a slab):

de,max: l 96 'VRd ,c: 1 960788 = 1544 milz

Vid max=VEa=Vrao »thus the PSB reinforcement is applicable.
Shear reinforcement resistance
The C area is the area closer than 1.125d from the column face (see Fig. 9.2.6.5.1).
m_ =8 1is the number of elements (rows) in the area C.
n.=2 1is the studs of each element (row) in the area C.
d ,=10mm is the shaft diameter of double headed stud.
n=1.0 because d <200 mm.

The total PSB resistance:
Ay f o, 10%- 77-500
Vg o=mn,———>HE=8.0. == =" =546 36kN
rd oy =T 41.15-1.0
BV g _1.15-400
Viea, 54636

=84.2 the PSB resistance is adequate and the detailings are correct.

Fig. 9.2.6.5.2 shows the relevant FEM-Design results.

Concrete shear Shear reinforcement
resistance

Hand 0.788 N/mm? 546.36 kN
calculation

FEM-

Design 0.79 N/mm?* 546.36 kN
calculation
Difference 0.20% 0.00%

The differences between the numerical and hand calculations are under 0.5%.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst180x/models/9.2.6 Punching calculation of a
slab.str
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9.2.7 Interaction of normal force and biaxial bending in a column

In this section we will calculate the utilization and the load-bearing capacity of a cantilever
column under biaxial bending and normal force (see Fig. 9.2.7.1) according to non-linear
concrete and reinforcing steel material model.

Inputs:
Concrete characteristic compressive strength fu= 20 N/mm?
Partial factor of concrete Y. = 1.50
Effective creep factor Qef= 2
Partial factor of concrete Young's modulus Yee = 1.2
Reinforcing steel characteristic yield strength fx = 500 N/mm?
Partial factor of reinforcing steel vs=1.15
Ultimate limit strain of reinforcing steel ex=25 %, e.a=225%
Slope of plastic part (material model) k=1.05
Longitudinal bar diameter ¢ =20 mm
Stirrup diameter ¢s =8 mm
Concrete cover (on stirrups) ¢ =20 mm
Column height L=30m
Column width (square section) b =300 mm; h =300 mm
The effective depth d=300-20-8—-20/2 =262 mm
Normal force Nea = 500 kN
Bending moment in y' direction Mggy' = 10 kKNm
Bending moment in Zz' direction Mg, = 10 kKNm

N,,~ 500 kN
# M= 10KNm

- |

M, iy 10 kNm

L=3m
300

N 300

Figure 9.2.7.1 — Cantilever column with the external forces and moments and the RC section -
the x direction is the axis of the column, y and z are respect to the moment directions
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In Eurocode 2 there are different methods to calculate the load-bearing capacity of the column.
One of them is the Nominal stiffness method and an other one is the Nominal curvature method.
We will calculate the utilizations and the load-bearing capacities with independent “hand”
calculations respect to both mentioned methods then we will compare the results with FEM-
Design calculations.

9.2.7.1 Nominal stiffness method

Here we will calculate the nominal bending stiffness of the column and then increase the acting
moments to consider second order effects. The Eurocode 2 suggests to increase the moment only
in the unfavorable principal direction. In FEM-Design to ensure the most unfavourable result the
first order moments will be increased with the effect of the imperfections and second order
effects in both principal directions to be on the safe side and get the most unfavourable
condition.

The nominal bending stiffness of the column:
EI=K,E 1. +K,E,1,=0.0566-25000-6.75-10°+1-200000-1.576-10'=4.107-10"> Nmm’ ,
where:

__kik, _1-0.1698
I+, 142

=0.0566 is a factor for effects of cracking, creep etc.

c

k,= \/ S \/ 20 =1 1is a factor which depends on concrete strength.

20 20
ni 04167 —— 69.282
k,=min{ 170 (=min 170 +=0.1698 is a factor which depends on axial force and
0.2 0.2

slenderness.

_ Nz Ngo 500000

= = =0.4167 is the relative axial force.
Acfcd b2 fck 3002 20

Y. 1.5
[
A =f° 2,L 263(6)8(3) 69.282 is the slenderness ratio.
i i

b 300
\F 12
l_ —_
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section.
b 300" S 4o :
1 == 12 =6.75-100mm" is the inertia of the uncraked concrete section.

E ,=E_ly..=30000/12=25000MPa is the design value of the modulus of elasticity of
concrete.

K =1 is a factor for contribution of reinforcement.

b\’ ¢'m b ,20°x 300 7 4
I =A|d—=|=4——|d—=| =4 262——| =1.576-1
s S(d 2) 1 ld 2] 1 6 > 576-10'mm

is the second moment of area of reinforcement, about the centre of area of the concrete.

After this we need to increase the first order moments in both direction due to imperfection and
second order effects.

Considering the effect of the imperfection (see the former underlined comment also):
MO’Ed,szfgd,y+ e; N ;;=10000000+ 15-500000=17.5 kNm
MO’Ed,ZszEd,Z-i- e; N ;;,=10000000+15-500000=17.5 kNm

The eccentricity according to the imperfection in both direction:

ly, 2L _2-3000 _

©=300 400 400 _lomm

/
NOTE: In Eurocode 2 the ﬁ value may be reduced in the function of the column height,

but FEM-Design do not consider this effect thus we are on the safe side.

The increased design moment values according to the second order effects (see the former
underlined comment also):

_MO,Ed,y: 17.5

MEd,y—l Now 500 =31.47kNm and
N, 1126.2
M 17.5
M, =—\ti= = =31.47kN
“T Ne 500 e
N, 1126.2
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where N;is the buckling load based on nominal stiffness of the column:

_7’El _7°4.107-10"

N
o (2:3000)°

=1126000 N=1126kN

Now we need to calculate the resistance (load-bearing capacity). For this the M-N interaction
curve (bending moment — normal force interaction curve)in the principal directions or the M-N
interaction surface is necessary. In Eurocode 2 there is a simplified method to check the
utilization with the aid of the M-N interaction curves in the principal directions but there is a
more accurate solution for the problem with the help of the M-N interaction surface. Let's see

what is the different between these calculation methods and then we show you what is the FEM-
Design solution for this problem.

First of all with independent numerical calculation we provided the M-N interaction curve in the

principal directions. According to the square and double-symmetric cross section these two
curves will be identical each other (see Fig. 9.2.7.2).

At the given design normal force value (Nzs = 500 kN) the moment resistance with numerical
calculation in both y and z direction is: M, =My, .=104.1kNm (see Fig. 9.2.7.2).

1800
1600
1400
1200
1000

800

Normal force resistance [kN]

600 [31.47; 500] [104.1; 500]
—
400
200
0
0 20 40 60 80 100 120 140

Moment resistance [KNm]

Figure 9.2.7.2 — The M-N interaction curve in the x-y or in the x-z plain

The utilization based the approximation formula of Eurocode 2 is the following:

Mg N (Mg " (3147 [31.47\"
2| 4 2| = 22E0) (222 —50.230
(MRd’y) (MR[,,Z 104.1 104.1 R
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The normal force utilization is:

N _ Ny - N gy B 500000
NRd Acfcd+Asfyd ¢27T 2027[

=0.2863

b f +45==f, 300°13.33+4 435

The “a” value can be linearly interpolated based on the following table:

a=1.155
Ny,
0.1 0.7 1.0
N g
a 1.0 1.5 2.0

The M-N curves were calculated based on the material models what you can see in Fig. 9.2.7.3.
The strain values for concrete coincide with the values what were mentioned in Chapter 9.2.4.

NOTE: Due to numerical stability FEM-Design uses a bit modified concrete material model
according to Fig. 9.2.4.3 but by ultimate limit state with the design stress values.

c2 8c1.|2 SC Ssy = fyd/E’s gud 85

Figure 9.2.6.3 — The material models for the M-N curve calculations
left: concrete (only compression), right: rebars (both tension and compression)

Concrete:

oc<ec)=fcd[1—(1—§;)zl if0=e.<e.,

Gc(gc) :fcd ij‘802<ch8cu2
Rebars:
0,(e)=c,E, i o<t
§ S Es
¢ Lo
’ Es . fyd
O,\&)= yd - yd 5 l < E&=8yy
(e bk 1) [ Fices
d s
ud_EL
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Fig. 9.2.7.4 shows a slice of the M-N surface in the direction of 45° of angle between y and z
axes. Based on this figure we can calculate the utilization by hand in a more accurate way. At
the Ngs = 500 kN level the maximum moment capacity is §1.96 kNm for the 45° direction (see
Fig. 9.2.7.4). Based on this moment capacity we can calculate the maximum moment capacity in
the principal directions according to the equal design moments in y and z directions:

M (N ) =M (N )= 252225795 kNm

Due to this value we can calculate the “a” value more precisely based on tha fact that in this
example the increased moment values are the same in the two directions. The following
expression must be true:

> 57.95
104.1

M a’e M a’re 1.183 1183
Ed,y 4| ez _|31.47 + 3147 =48.57%
MRd,y M g, . 104.1 104.1

This means that the Eurocode formula is on the safe side based on this utilization type.

) =1.00 and based on this: ¢”“"*=1.183 . Thus the more precise utilization is:

1800
1600
1400
E 1200
3
g 1000
7 [72.63; 816.0]
o 800
2
£
g 600 [44.51; 500] [81.96; 500]
z
400
200
0
0 10 20 30 40 50 60 70 80 90
Moment resistance [KNm)]
Figure 9.2.7.4 — A slice of the M-N surface between y and z axes with 45° of angle
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Fig. 9.2.7.4 shows a slice of the M-N surface in the 45° of angle direction between y and z axes
(which is the relevant direction in this example, see the increased design moment values in the
two directions). In FEM-Design the utilization is the following:

Ney=n N s MEd,y:nMRd,y s My, .=nMy, .

where 7 is the utilization, it means that if we increase the normal force and the two bending
moments linearly at the same time we will reach the failure surface of the cross-section (see the
red line in Fig. 9.2.7.4). With other words the eccentricity is constant.

According to this scenario the utilization with the independent “hand” calculation is the
following:

The red line breaks through the M-N curve at (see Fig. 9.2.7.4):
N, =816.0kN, M ,,=72.63kNm

The utilization of the column based on the red line geometrical point of view according to Fig.
9.2.7.4:

_ VMG, A My, AN 3147314745007

_ =61.27%
VM2, + N2, V72.63>+816°

Utilization based on the FEM-Design detailed results is (see Fig. 9.2.7.5): n=64%

The difference between the “hand” and numerical calculations is less than 5%. This difference
comes from the fact that FEM-Design uses a bit modified concrete material model (see. Fig.
9.2.4.3, but here the stress values were replaced by the design values) to ensure the numerical
stability for every case.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst170x/models/9.2.7 Interaction of normal force
and biaxial bending in a column.str

290


http://download.strusoft.com/FEM-Design/inst170x/models/9.2.7%20Interaction%20of%20normal%20force%20and%20biaxial%20bending%20in%20a%20column.str
http://download.strusoft.com/FEM-Design/inst170x/models/9.2.7%20Interaction%20of%20normal%20force%20and%20biaxial%20bending%20in%20a%20column.str

Verification Ex

] [%] uone:
srLe | e 7P

1LE Tl P

00005 [nt] PN

3 a1

L sUON29S

AfL uonezian
TP A= Ty VR A = Iy Py = T I580.0) (BLURSIUL S1RLNIN

UOIIRZ|IN Uo28s

Sr0 [] {2neaueaiay zneg peuiay Jpyy)
95000 0- [-] o223
86L00°0 ]y
900 o i
052200 [
871000 [] ¥
L o1
L SUON28S
il s
&
Kk R
z
z
z

81215 LI SIELUIN

(rveten

9'(z)1'9 1) Led) Sulens pue sessas

17e Twinpl ¥
At Twinpl <P
084k [enpt] 0
a0l [1%
0ok T &%=
8L 9zil [winp 28N
Zivegioly | LUWNIE3)
Zi+erzsle | uwmN] fCFa)
900 1
0 B
1€ [wirefl =Ei
e Tkl ¥¥3
0641 [unpi] ¥¥30
00'l- ['s
0oL Twinpl ™3
EIRANS [t "B
ZivesioL | UWNIME)
Ziverzsle | LW HEFI)
a0 1+
110 [ oy
[ [
o Hu
00005 [nf] PN

| 21

A Suonoes

JE = Py e Uy PRy | 732_

Uiy B35 - PRy o UM PRy | 5 (P |

{(p)1'e) WOz = (0 /% "ww oz Jxew = (0F /7y w0z Jew = T

{(p)19)  Wwnz = 08 / "W OF Jxew = (0g /1YW g Jxew = e
SN PN

-

re) DE ey s pay =y
| I

Na, umz
EE
1Zg) S 3 +173%=13
fzcs) 001 =H
(ezs)  Pd+1)idr-h=3H
0Ll
v

s

(Fzs) n 070
(szg) 0z/®p =M

(P42 PN =u

Q“SEHNX

PaJEpIsSU0Y | Z UORIRUIP U988 Japio puz.

8789 [1%
998 Juw] &
0009 [ 29

palapIsuad || LanIelp UI1I648 J8pIo puz

8C'69
993
0009

LFLT

£ SUDI03S

{286 1| UBd) poLgeLl SSeUs [BUILloU o] BUIPI0IOE PelspISUoD S1108)8 18pIo puz

Fre) =Y

S108)48 18PI0 PUOISS JO LOIEIEPISU0D)
{19 '8°6 11| Hed) 51938 [BXE J6) UOHRZINN UOHDDS

Figure 9.2.7.5 — The detailed results of the RC column in FEM-Design with nominal stiffness method
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9.2.7.2 Nominal curvature method

Here we will calculate the nominal curvature of the column and then increase the acting
moments based on this curvature to consider second order effects. The Eurocode 2 suggests to
increase the moment only in the unfavorable principal direction. In FEM-Design to ensure the
most unfavourable result the first order moments will be increased with the effect of the
imperfections and second order effects in both principal directions to be on the safe side and get
the most unfavourable condition.

Considering the effect of the imperfection:
MO,Ed,szfEd‘er e; N ;;=10000000+ 15-500000=17.5 kNm
M(),E(,,‘ZzMIEd‘ZﬁL e; N ;;=10000000+15-500000=17.5 kNm

The eccentricity according to the imperfection in both direction:

oo lo 2L _2:3000
" 400 400 400

=15mm (see also the relevant NOTE in Chapter 9.2.6.1).

The second order eccentricity:
1 12

r° 1.816:107°-6000

c 10

=65.38mm |,

€,=

where the curvature:

lzK,K¢l=0.9842~1-1.845-10‘5=1.816~10‘5L ,
r o mm

where:
Sya 435
1 gyd Es 200000 -5 1
—= = = =1.845-10 "——
ro 0.45d 0.45d 0.45-262 mm
T | 1455404167
K ,=min n“_l Mo |~ 1455404 =0.9842 is a correction factor depending on axial load.
o7 [ 20" 500
A f 4 4 ¥s 4 4 1.15
n,=1+w=140.4554=14554 ; w=—""= = = =0.4554
Acfcd chk 2&
b 300
Y. 1.5
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The relative axial normal force:

= Ny _ N, :500000
Acfcd

=0.4167 , n,,=0.4
bzfck 30022 el

Ye 1.5

K ,=max

I+ /f Vo ] = max[0'91762} =1 is a factor for taking account of creep.

Where:

Sa A 20 69.282
=035+% A 0354+ 2 22222 () 01188
p 200 150 200 150

[ .
A= fozz—_Lz 26323(3) =69.282 the slenderness ration (see Chapter 9.2.7.1 also).
l l .

The increased design moment values according to the second order effects:
My =My ,+N g e,=17.5+500-0.06538=50.19kNm and
My, =Mz .+ Nge,=17.5+500-0.06538=50.19 kNm .

1800

1600

1400

1200

1000

800

[80.35; 566.0]

600 [70.98; 500]

Normal force resistance [kN]

400 [81.96; 500]

200

0 10 20 30 40 50 60 70 80 90

Moment resistance [KNm)]

Figure 9.2.7.6 — A slice of the M-N surface between y and z axes with 45° of angle
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Fig. 9.2.7.6 shows a slice of the M-N surface in the 45° of angle direction between y and z axes
(which is the relevant direction in this example, see the increased design moment values in the
two directions). In FEM-Design the utilization is the following:

Ney=n N s MEd,y:nMRd,y s My, .=nMy, .

where 7 is the utilization, it means that if we increase the normal force and the two bending
moments linearly at the same time we will reach the failure surface of the cross-section (see the
red line in Fig. 9.2.7.6). With other words the eccentricity is constant.

According to this scenario the utilization with the independent “hand” calculation is the
following:

The red line breaks through the M-N curve at (see Fig. 9.2.7.6):

N 4, =566.0kN , M ,,=80.35kNm

The utilization of the column based on the red line geometrical point of view according to Fig.
9.2.7.6:

VMG M A NG 150.197450.19°+500°
M2+ N2, V80.35%+566.0

=88.33%

Utilization based on the FEM-Design detailed results (see Fig. 9.2.7.7): 1=92.7%

The difference between the “hand” and numerical calculations is around 5%. This difference
comes from the fact that FEM-Design uses a bit modified concrete material model (see. Fig.
9.2.4.3, but here the stress values were replaced by the design values) to ensure the numerical
stability for every case.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/9.2.7 Interaction of normal force
and biaxial bending in a column.str
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9.2.8 Calculation of a statically indeterminate beam with post tensioned cables

Inputs:
Characteristic tensile strength of steel fox = 1860 MPa
Cross-section of one strand A, =150 mm*
Number of strands n=2
Curvature coefficient p=0.05
Wobble coefficient k=0.007 1/m
Anchorage set slip g=4 mm
Young's modulus of the strand E,= 195 MPa
Jacking side point A
Young's modulus of concrete when post tensioning applied Ecn=Em(t) = 30 GPa
The final value of creep coefficient o(t,t) =2.00
Final value of shrinkage €s = 0.4 %o
Relaxation class of the strands Class 2
Value of relaxation loss Prooo = 2.5 %
The cross-section of the beam is rectangle b =300 mm, h = 600 mm

In this example we would like to calculate the equivalent forces of a post tensioned cable system
before and after the long term stress losses and compare these results with FEM-Design results.
For these calculations we need the data which were indicated above in the table and we need to
know the shape of the cables. The geometry of the statically indeterminate beam and the shape
of the cables are shown in Fig. 9.2.8.1.

Parabola 1 ; L, =4.24 m

Parabola 1 ; L, =4.24 m VPar- 2;L,=152 m

/7 /7 /7 /7
g
g B =120 mm~_C 300 mm g
o§ S ad b 1<20\-\ Ds g
1 (=]
I e
(0]
vV
, L=50m h L=50m h
7 7 7

Figure 9.2.8.1 — The statically indeterminate beam with the cable profile

The angular deviation of the cables is a function starting at point A and it depends on the shape
of the cables (e.g. base points and inflections). Now we have parabolic shapes on each parts (see
Fig. 9.2.8.1).
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The angular deviation function: «(x)

The values of the angular deviation function at some typical points:

4
a(A)=0rad ; a(B)=a(A4)+2atan Lfl:0.6039rad ;

1

a(C)=a(B)+2atan 4sz

4
=1215rad ; a(D)=a(C)+2atan f1=1.819rad

2 1

Based on these values the function of the angular deviation, see Fig. 9.2.8.2.

200
1.80
180
140
1.20
1.00
0.80

Angular deviation [rad]

.50
0.40
0.20
0.00
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 B.00 Q.00 10.00
Langth [m)]
Figure 9.2.8.2 — The function of the angular deviation [o(x)]

Let's be the stress at the active jacking end (point A) during post tensioning:
0,,=08f ,=1488 MPa
NOTE:

By a real design task according to the Eurocode 2 we need to consider an upper bound for this
value, e.g.: opo,max:min(O.Sfpk,'0.9fp0,1k) , but by this example we do not consider it
because it does not affect the method of the following calculation. In FEM-Design the user
should give the o ,, value and all of the calculations will consider this input stress as jacking
stress.

Before the calculation of the equivalent forces which come from the post tensioning of the
beam, first of all we need to calculate the different stress losses.

Fisrtly we consider the stress losses which come from the technology of post tensioning.

The stresses in the strands are also a function considering the losses due to friction.

297



Verification Examples FEM-Design 18

The function of the stresses considering losses due to friction: o, (x)

The values of the function of the stresses considering losses due to friction at some typical
points:

0,,(4)=0,,=1488 MPa

0, (B)=0 e " =1488 ¢ 000000042 1445 MPa

0, (C)=0 e e bl 2 1488 0051215004244 12))_ 1397 VP,

0, (D)=0 e ot 2 14gg o OSSO0 — § 354 MPpa

Based on these values the function of the stresses considering the losses due to friction, see Fig.
9.2.8.3.

1500
1485
1470
1455
7
g 140
=
= 1425
s
2 1410
al
L
1395
1380
1365
1350
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 92.00 10.00
Length [m]
Figure 9.2.8.3 — The function of the stresses considering losses due to friction [0,:(x)]

Now we need to calculate the stresses considering the losses due to the anchorage set slip.
The jacking is applied at the start point A.
The length of the effect of the anchorage set slip (Ls;) comes from the following equation:

Ly L,
gE,=2[(0,(x)=0,(L))dx=2 [0, (x)-0 e "t gy
0 0

The solution of this equation after some iterations is:
L ,=6.667Tm

The stress loss at the active jacking side due to anchorage set slip:

[ [1__ D+l ]}:2[1488[1——e_mE“3M+QmT&%”]LZZOOB&P&

The stresses in the strands are also a function considering the anchorage set slip.

The function of the stresses considering losses due to anchorage set slip and friction: © pz(x)
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The values of this function at some typical points:
old)=—0,,(4)+20 ,—A0 ,=—1488+2-1488—200=1288 MPa
0,,(B)==0,,(B)+20,—A0 ,=—1442+2-1488 -200=1334MPa

p.

(o}

(
0,(C)l==0,(C)+20 ,— Ao ,;=—1397+2-1488—200=1379 MPa
0,(L,)==0,,(L,)+20 ,—Ac ,=—1388+2-1488—200=1388 MPa
0,(D)=0,(D)=1354 MPa

Based on these values the function of the stresses considering the losses due to anchorage set
slip and friction, see Fig. 9.2.8.4.

1390
1385

1375
1365
1355
1345
1335
1325

Tension [M/mm2]

1315

1305
1295

LS i
1285 A

1.00 2.00 3.00 4.00 5.00 6.00 7.00 B.00 9.00 10.00
Langth [m)]

|
|
|
|
|
|
|
|
|
|
I

Figure 9.2.8.4 — The function of the stresses considering losses due to anchorage slip and friction [6,:(x)]

The average stress value in the strands after the losses due to anchorage set slip and friction:

2L
o Llx)dx
o :{ %) _ 13445
m 2L 10
NOTE:

=1344.5MPa

By a real design task according to the Eurocode 2 we need to consider an upper bound for this
value, e.g.: am,maxzmin(0.75fpk ,'0.85fp0,1k) , but by this example we do not consider it
because it does not affect the remaining calculation. In FEM-Design the program is also
calculating an average stress after considering the losses due to anchorage set slip and friction
and using this value to estimate the short and long term stress losses.

We need to consider the short and long term stress losses in the strands after the jacking.
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Next to the frictional and anchorage set slip losses another short term loss is the losses due to
elastic shortening.

The average normal stress in the concrete cross-section at the level of the anchorages:

o :nﬁmAp+n0mApe1e _2:1344.5-150  2-1344.5-150-100
<A, I, 300600 300-600°/12

100=2.988 MPa

The average elastic stress losses according to Eurocode 2:

n—1 E, 2-1 195
= 2.988 —~>=4.856 MP
20 CE, (1) 22 30 e

Ao,=

The average stress in the strands after the elastic shortening:
0,=0,—A0 ,=1344.5—4.856=1341.5MPa

The average stress in concrete at the level of the anchorages considering the elastic shortening:

_no,4, no,de 213415150 , 2-1341.5-150-100

_ 100=2.981 MP
ci Y4, I, "7 300-600 300-600°/12 :

o

After the short term stress losses we can calculate the long term stress losses in the strands.
The stress losses due to creep:

E
Ao =E_P¢)(z,to)amz%z.oo-zygl=38.75MPa

cr
cm

The stress losses due to shrinkage:
Ao =F, ¢,=195-0.4=78 MPa

The stress losses due to relaxation:

107°-1341.5

0.75(1—u,) 0.75(1-0.72)
|t o 1072( 500000
A0 ,=0.66 0 5e"" (W) 10 Sati:0.66-2.5e91°7z( )

1000

(Relaxation class: 2.)
Ao ,=57.19MPa
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These three effects, namely the creep, shrinkage and the relaxation are in interaction. The stress
losses due to the interaction:

Ao +08A0 +A0,,

poctstr E nA AC 2
Mg I 1080l n)]

cm c c

_ 78+0.8-57.19+38.75
et 195 2:150 300-600
1+ 35300600 3000007 13 100 ) [1+0:8-2.00]

Ao =156.6 MPa

The average stress in the strands before the long term losses (TO0):
o,=0,— Ao ,=1344.5—-4.856=1341.5 MPa

The average stress in the strands after the long term losses (T):

0,=0,~A0, ., =13445-156.6=1187.9MPa

Based on these values we can calculate the equivalent forces which will represent the effect of
the post tensioning on the statically indeterminate beam.

The equivalent forces at TO time before the long term losses:

The concentrated forces at the ends (at the centroid of the concrete cross-section):
Py=nd,0,=2-150-1341.5=402.5kN

The angle of the tangent of the cable at the ends:

47, 4330
=atan———

~17.29°
L, 4040

o =atan

The horizontal and vertical components of the concentrated forces at the ends:

P,y=P,cos a=402.5-cos17.29°=384.3kN
P,,=P,sin a=402.5-sin17.29°=119.5 kN

The concentrated moments at the ends according to the eccentricities at the ends:
M ,=P,, e,=384.3-0.1=38.4kNm
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The intensity of the distributed load according to the different parabola shapes:
8P/, _8402.5:033 .o kN

u = A
R 4.24° m
8P,f, 8402.5-0.12 kN
U= L02 2= T 16737
: .

The equivalent forces at Too time after the long term losses:

The concentrated forces at the ends (at the centroid of the concrete cross-section):
P,=nAd,0,=2-150-1187.9=356.4kN

The horizontal and vertical components of the concentrated forces at the ends:

P, ,=P_,cosa=356.4-cos17.29°=340.3kN
P.,,=P, sina=356.4-sin17.29°=105.9kN

The concentrated moments at the ends according to the eccentricities at the ends:
M, =P, ,e,=340.3-0.1=34.0 kNm

The intensity of the distributed load according to the different parabola shapes:

8P, f, 83564033 _,,kN
U= 2 2 =523—
L 4.24 m
8P, : .
‘- 2f2:8 3564012 _, g 1 KN
L 1.52 m

Fig. 9.2.8.5 shows the equivalent forces on the statically indeterminate beam before and after the
long term stress losses in the strands.
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u,= 167.3 kN/m

u,, = 59.1 kN/m u,,

MM

D

I~ /\\ 2
M T~ T~ M =38.4

kNm

u,=148.1 kN/m

u,, =523 kN/m u

SRIAAARARARRREN LTI b

2 TN P

kNm

7
Figure 9.2.8.5 — The equivalent forces before [above] and after [below] the long term stress losses

Considering the equivalent forces after the long term stress losses (Too, Fig. 9.2.8.5 below) the
camber (at the mid-span) of the statically indeterminate beam (without detailed calculation

according to the theory of elasticity) is:
b camber = 2-86 MM

By this camber calculation we considered only the effect of the equivalent forces (Fig. 9.2.8.5
below) and the effective modulus of elasticity of concrete: E. .= Ecn/(1+0(t,t0)) = 10 GPa.

e

Figure 9.2.8.6 — The shape of the post tensioned cables in FEM-Design

Fig. 9.2.8.6. shows the shape of the post tensioned cable in FEM-Design.
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167 kKN/m

147 kN/m

405 kN

HMM 38.6 kNm

49.3 kN/m 575 KN/m 51.1 KN/m 52.7 kN/m 60.3 KN/m 51.8 kN/m

385 kN,

e

36.8 kNm

147 kN/m

338 kN

S

32.3 kNm!

358 kN

433 KN/m 50.7 kN/m 45.0 KN/m 46.7 KN/m 53.5 kKN/m 45.8 g 2 KN

Figure 9.2.8.7 — The equivalent forces before [above, TO] and after [below,Too] the long term stress losses
in FEM-Design

| 0.00

Figure 9.2.8.8 — The vertical translations [mm] in FEM-Design from the equivalent post tensioning loads at
Two time considering the effective modulus of eleasticity of concrete

We can say that the results of the hand calculation and the automatic post tensioned cable
calculation of FEM-Design are identical. See the FEM-Design results about the equivalent
forces in Fig. 9.2.8.7 and the camber in Fig. 9.2.8.8.

Keep in mind that FEM-Design post tensioned cable modul calculates the equivalent forces in
more precise way than this hand calculation and considers the curvatures of the shape of the
cable in more accurate way. Theoretically the calculated equivalent forces are in equilibrium but
the presented hand calculation method does not consider the friction force (and its
eccentricities), but FEM-Design is checking the equilibrium of the equivalent forces and
automatically applying a distributed axial force and a distributed bending moment on the beam
if it is necessary. These forces and moments are also indicated in the program by the post
tensioned equivalent load cases.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst170x/models/9.2.8 Calculation of a statically
indeterminate beam with post tensioned cables.str
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9.3 Steel design

9.3.1 Interaction of normal force, bending moment and shear force

In this sub-chapter an IPE 200 beam will be investigated under the interaction of normal force,
shear force and bending moment around its strong axis (see Fig. 9.3.1.1). Stability analysis will
not be considered here only strength resistance calculations.

Inputs:
Yield strength of structural steel f, = 235 N/mm?*
Cross-sectional width b =100 mm
Cross-sectional height h =200 mm
Flange thickness tr=8.5 mm
Web thickness ty = 5.6 mm
Web height hy, =159 mm
Radius of root fillet r=12 mm
Cross-sectional area A= 2848 mm?
Plastic cross-sectional modulus Wiy = 220638 mm’
Normal force Nea = 70 kN (compression)
Bending moment around strong (y') axis Mgg=37.5 kNm
Shear force Vs =150 kN
z iFEd=300 kN W
L __
X Lot , &

-37.5
Mwmﬂm & o
+37.5

Figure 9.3.1.1 — The statical system and internal forces
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First we need to make the classification of the cross section individually for every internal
forces:

The coefficient depending on fi:
. \/ﬁ: \/ﬁ: |
f 235

Classification due to normal force

Flanges:
b—t —2 _56-_9.
c= - r:1()() 3.6 212=35.2mm ; £=£=—35'2=4.14 ; £<95
2 2 tot, 8.5 t

Because 4.14<9 thus the flanges are in Class 1.

Web:

h
Ezlzﬁzzg._gg : £33s
t t 5.6 t

w

Because 28.39<33 thus the web is in Class 1.

Therefore the cross section is in Class 1 under normal force.

Classification due to bending moment around strong axis

Flange:
b—t,~2 562
=TT M02567212 55 S22 404 Caop
2 2 {1, 85

because 4.14<9 thus the flange is in Class 1.

Web:

h
e _159_ 5039 Co70g
t t 5.6 t

w

because 28.39<72 thus the web is in Class 1.

Therefore the cross section is in Class 1 under bending moment around strong axis.
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Interaction of bending, shear and axial force

Normal force resistance under compression:

_ 235
NC,Rd—Ay—MO—2848E—669.3kN

Bending moment resistance around strong axis:

f, 235

Mc,Rd:Wpl,yy_m:22O638 WZSISSkNm

Shear resistance:
A,=A-2bt,+(t,+2r)t ,=2848—2:100-8.5+(5.6+2-12)8.5=1400 mm’

f,IV3 —1400%=189.9kN

Vpl,RdzAv Yo

The moment resistance should be reduced if V' ,>0.5V , 4, .
Now 150kN>94.95kN therefore the reduction factor is:

2 ' (2 2
—VE”’—I) =(M—1) ~03361

p:
V i ra 189.9

The reduced bending resistance:

pA,

0.3361-1400° | 235
My,V,Rd:(Wpl,y_ 4t

lL:(220638— =44.94 kNm

Y mo 4-5.6 1.0

The utilization according to the interaction:

N M
szd + My,y I’jid = 6678.3 4 :47.'954 =0.939<1.0 thus the resistance is adequate.

Fig. 9.3.1.2 shows the statical system and the internal forces in FEM-Design.
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300 kN

——

N [kN]

-70.0
-52.5
-35.0

-17.5 I[m]

T2 [kN]

-150
-113
-75

. I[m]

38
75
113
150

My' [kNm]
-40.0

-30.0
-20.0

-10.0 |[m]

10.0
20.0
30.0
40.0

Figure 9.3.1.2 — The statical system and internal forces in FEM-Design

The detailed results with the interaction utilization based on FEM-Design are shown in Fig.
9.3.1.3.
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IPE 200
' . 2 P = 768mm  f, = 235N/mm’
2 A = 2848mm° ¢ = 1.00
1, = 1.943e+07mm’ A, = 93.90
I, = 1.424e+06 mm"*
Iy = 1.943e+07 mm*
I, = 1.424e+06 mm*
—Y 1w, = 2.206e+05mm’
W,, = 4.464e+04mm’
W, ., = 1.943e+05mm’
W, o = 2.847e+04 mm’
i = 83 mm
iy = 22 mm
£ o = 6.846e+04 mm*
l,, = 1.275e+10mm°

Shear resistance, 2-2 - Part 1-1: 6.2.6,6.2.8
LC:"1", x=0mm

Class, =1, Class,, =1, Class,, =1

Ay -f, 1400235
1" == ¥ = =18995kN (6.18
ZplRd \/5 ¥ \/5 -1.00 ( )

v =M. tEd Y, =
2pIT.Rd \/ 126 {f, 1V3) 1y, M7

0.00
=\f1- -189.95=189.95kN  (6.26
\/ 1.26 (235//3) 71.00 (6.26)

Vors 150,00 _
Vy,rre  189.957 0.79=1.00 (6.25)- OK

Normal capacity - Part 1-1: 6.2
LC:'1', x=1000 mm

Class, =1, Class,, =1, Class,; =1
Vg =000kN <05V, 15, =05-24742=123.71kN —->p, =0.00

2
_{2150.00

V ey = 150.00kN>05 -V, 1o, =0.5-189.95=94.97kN-->p, = (—2 Vags | 1 ) 789.95

2,plT,Rd

2
-1) =0.24

Neg Mgy My _ 7000 | 37.50  0.00 _
No "Wy T M, ~ 669.38 14629 T10.45 091100 (63-0OK

Figure 9.3.1.3 — The detailed results from FEM-Design

The difference between the two calculations is 3%.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/9.3.1 Interaction of normal force,
bending moment and shear.str

309


http://download.strusoft.com/FEM-Design/inst170x/models/9.3.1%20Interaction%20of%20normal%20force,%20bending%20moment%20and%20shear.str
http://download.strusoft.com/FEM-Design/inst170x/models/9.3.1%20Interaction%20of%20normal%20force,%20bending%20moment%20and%20shear.str

Verification Examples FEM-Design 18

9.3.2 Buckling of a doubly symmetric I section

The buckling stability analysis will be investigate in an IPE 240 simply supported beam (see

Fig. 9.3.2.1).

Inputs:
Yield strength of structural steel f, = 355 N/mm?*
Cross-sectional width b =120 mm
Cross-sectional height h =240 mm
Flange thickness tr=9.8 mm
Web thickness ty = 6.2 mm
Web height hy, = 190.4 mm
Radius of root fillet r=15mm
Cross-sectional area A=3912 mm?

Inertia around strong axis

I, = 38916273 mm*

Inertia around weak axis

I, =2836341 mm*

St. Venant torsional constant

I,=127368 mm*

Warping constant I, = 36680292708 mm°®
Buckling length in both directions L,=60m
1200 |
1.3\ 5.0 N, =140 kN
g 5
N Z ) L.=60m )
6 7 rd
e Y
o v = z @ N, =140 kN
T 8§ TV X X 5

77

Figure 9.3.2.1 — The statical system and the cross-section

First of all we need to make the classification of the cross section for normal force:

The coefficient depending on fi:
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235 _ [235
= 222152 8136
‘ \/fy \/355

Classification due to normal force

Flanges:
b—t,—2 —62-2.
=22 1202622205 gy g S=£-810y096 Lo,
2 2 roity 9.8 t

Because 4.276<7.322 thus the flanges are in Class 1.

Web:

h
ot 6.2 t

Because 30.71<30.92 thus the web is in Class 2.

w

Therefore the cross section is in Class 2 under normal force.

Flexural buckling around strong axis

1,
The radius of gyration (y-y axis): i :\/ " :\/ 382;#: 99.74 mm

y

The non-dimensional slenderness: A = )LL _6000 1 __ 0.7873 , where
1

99.74 76.41

- —~76.41
7,355

The imperfection a factor value based on EN 1993-1-1 Table 6.2:

%=%=2> 1.2 rolled section (y-y axis) and ¢,=9.8mm<40mm therefore “a” buckling

curve is relevant thus the imperfection factor is «,=0.21

E,
/11=7r\/ ,__ [210000

®,=0.5[1+a,(%,~0.2)+,’]=0.5[1+0.21(0.7873-0.2)+0.7873*]=0.8716

1 1

— = =0.8029
@ D -1 0.8716+10.8716’—0.7873°

Reduction factor: x =
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A . .
Flexural buckling resistance: N, | p,= XS,M]fy _ L 21912 393 _1115kN

Flexural buckling around weak axis

1
The radius of gyration (z-z axis): i = j:\/ %z%.% mm
. . - L, 1 6000 1
Th -d 1 slend : =——a=———-=20916 h
e non-dimensional slenderness: A4, i 72693 7641 , Where
E
/11=;r\/ S=Jr\/210000=76.41
f, 355

The imperfection a factor value based on EN 1993-1-1 Table 6.2:

%: %: 2>1.2 rolled section (z-z axis) and ¢,=9.8mm<40mm therefore “b” buckling

curve is relevant thus the imperfection factoris «_=0.34 .
®.=0.5(1+a.(2.-0.2)+1.°)=0.5(1+0.34(2.916-0.2)+2.916"|=5.213

1 1

Reduction factor: .= —= - E =0.1049
D D -1 5213+15.213°-2.916
A . :
Flexural buckling resistance: N, . p,= XS/Mny: Lol 31912 355 =145.7kN
Torsional buckling
The elastic torsional buckling critical force:
2 2
N, =G+ T E L o 150769 127368+ Z-210000- 36680292708 | _ 65 oy
o L, 103.3 6000

where i is the polar radius of gyration:

iy =V i+ yot 20=199.747+26.93’+0” +0°=103.3mm ,

where y, and z, are the distances between the center of gravity and the shear center of the cross-
section respect to the principal directions.

The torsional-flexural buckling is not relevant because the cross-section is doubly symmetric.
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_ A .
The non-dimensional slenderness for torsional buckling: A,= ny =4 31911622 g (;505 =1.093
cr, T

The imperfection o factor value based on EN 1993-1-1 Table 6.2:

h_240_ 2>1.2 rolled section (z-z axis) and 7,=9.8mm<40mm therefore “b” buckling

b 120
curve is relevant thus the imperfection factoris «,=0.34 .

D7=0.5(1+0 (A~ 0.2)+7,2)=0.5(1+0.34(1.093-0.2] +1.093?| =1.249

1 1

— = T _=0.5395
D, +VD— 1,7 1.249+V1.249°—1.093

Reduction factor: x ,=

Xr4f, _0.5395-3912355

Torsional buckling resistance: N, . p,= Yo 1 =749.2kN
The statical system and the internal forces shown in Fig. 9.3.2.2.
‘\ _140 kN
N [kN]
-140
-105
-70
-35 I[m]
Figure 9.3.2.2 — The statical system and the internal force in FEM-Design

Fig. 9.3.2.3 shows the detailed results about flexural and torsional buckling in FEM-Design.

The numerical result are almost identical with the hand calculations. The difference is less than
0.5%.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst170x/models/9.3.2 Buckling of a doubly
symmetric | section.str
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Figure 9.3.2.3 — Detailed results based on FEM-Design
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9.3.3 Buckling of a doubly symmetric * section

Yield strength of structural steel f, = 355 N/mm?
Cross sectional width b =200 mm
Thickness of the parts t=4 mm
Cross-sectional area A= 1584 mm’
Inertia around strong axis I, =2667712 mm*
Inertia around weak axis I,=2667712 mm*
St. Venant torsional constant I,= 8529 mm*
Warping constant I, = 7097545 mm®
Buckling length L:=2m

NEd=130 kN
Z‘ ‘ Z L L ,=20m L
Y Y i 7
X & NEd=130 kN
o
2y Ze)

2z

98 4 98

Figure 9.3.3.1 — The statical system and the cross-section

First of all we need to make the classification of the cross section for normal force:

The coefficient depending on fi:

235 [235
= 22222208136
‘ \/fy \/355

Classification due to normal force

Outstand flanges:

b—t 200—4 c 98

= = @ = . _=_=24.4
c 5 > 98 mm D TT 5

Because 24.45>11.39 thus the flanges (and the whole section) are in Class 4.

>

£>14€
t
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Calculation of the effective cross-section
k,=0.43

98
i B 4
P 284evk, 28.4-0.813610.43

N|Q

=1.617

A,—0.188 1,617-0.188

because A =1.617>0.748 thus: o= —
§ P . 1.617*

=0.5465

by =pc=0.5465-98=53 56 mm
Ay=1+4b 1 =4 +4-53.56:4=872.9mm’

Flexural buckling

; o
The radius of gyration (based on the gross section): i y:\/ —y:\/ —2616527412

y =41.04 mm

The non-dimensional slenderness: A= =0.4733 , where

V4 41.04 7641\ 1584

L, 1 \/A—eff_ 2000 1 [8729
i A

y

s __

7, V355

E,
Alzn\/ 210000 _7¢ 41

In EN 1993-1-1 Table 6.2 this type of section is not included thus “c” buckling curve was
chosen. The imperfection factor is: «=0.49 .

®=0.51+a(2-0.2)+1%]=0.5[1+0.49(0.4733—0.2)+0.4733?]=0.6790

1 1

Reduction factor: x = —= - ==0.8577
D+VD*—1> 0.6790+10.6790°—0.4733
A . :
Flexural buckling resistance: N, p,= £ yef;]fy Rt si] 8172'9 333 _65.8kN
Torsional buckling
The elastic torsional buckling critical force:
2 2
N, =1 +ZEL e |o L g0769.8509+ 2 2100007097345 )5 64N
o, L, 58.04 2000

where iy is the polar radius of gyration:

ioz\/ii+i:+y3+Z(Z)Z\/41.042+41.042+02+02258.04mm ,
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where y, and z, are the distances between the center of gravity and the shear center of the cross-
section respect to the principal directions.

The torsional-flexural buckling is not relevant because the cross-section is doubly symmetric.

L : . - Ay S, _ [872.9-355
The non-dimensional slenderness for torsional buckling: A, = —=L—t= =1.228
VN, , 205600

cr,

In EN 1993-1-1 Table 6.2 this type of section is not included thus “c” buckling curve was
chosen. The imperfection factor is: «,=0.49 .

®;=0.51+a (= 0.2)+1,°)=0.5(1+0.49(1.228-0.2) +1.228"|=1.506

1 1

Reduction factor: )y ,= — =
"o, 0i-1 1.506+11.506'—1.228>

=0.4206

A . .
Torsional buckling resistance: N, , p,= XTnyy _ UAZlE 8172'9 355 1303 kN

The statical system and the normal forces shown in Fig. 9.3.3.2.

130 kN

oo

Vv

-130+

Figure 9.3.3.2 — The statical system and the normal force diagram [kN] in FEM-Design

Fig. 9.3.3.3 shows the detailed results about flexural and torsional buckling in FEM-Design.

The numerical result are almost identical with the hand calculations. The difference is less than
0.1%.
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Figure 9.3.3.3 — Detailed results based on FEM-Design
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Download link to the example file:

http://download.strusoft.com/FEM-Design/inst170x/models/9.3.3 Buckling of a doubly
symmetric + section.str
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9.3.4 Buckling of a mono-symmetric channel section

Yield strength of structural steel f, = 275 N/mm?
Thickness of the parts t=20 mm
Cross-sectional area A =9200 mm?
Inertia around strong axis I,=35158841 mm*
Inertia around weak axis I, = 13426667 mm*
St. Venant torsional constant I,=1217153 mm*
Warping constant L, = 54039544948 mm®
Buckling length L:=6m

a

=

E
/|I/ 92.0 68.3
: G C z-Z g

SC o

0.0

% 200.0
1

Figure 9.3.4.1 — The channel section with the dimensions [mm] and the positions of the gravity and
shear centers

N, d=5 00 kN
r’ X 5 5
77,
Z ) L =60m )
Y d d
4 N, =500 kN
X A
> 3
Figure 9.3.4.2 — The statical system and design forces

First of all we need to make the classification of the cross section for normal force.

The coefficient depending on fi:
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235 235
= ——=4/==-=0.9244
N7 \/275

Classification due to normal force

Flanges:
c=200—20=180mm : $=18%_90 . 9,<C<10s
T :

Because 7.395<9.0<9.244 thus the flanges are in Class 2.

Web:

¢=100-20-20=60mm : $=20=30 . €33,
t 20 t

Because 3.0<30.51 thus the web is in Class 1.
According to these calculations the section is in Class 2 due to normal force.

Flexural buckling around strong axis

-
The radius of gyration (y-y axis, see Fig. 9.3.4.1): iy=\/qy=\/%=6l.82 mm

L
o 1 _@Lﬂ,ng where

2 61.82 86.81

The non-dimensional slenderness: , A4 ,=—
l
y

- —86.81
7, 2rs

According to EN 1993-1-1 Table 6.2 “c” buckling curve was chosen. The imperfection factor is:
a,=049 .

E,
/11:”\/ ,__ [210000

®,=0.5[1+a,(7,~0.2)+2,’]=0.5[1+0.49(1.118-0.2)+ 1.118’|=1.350

1 1

Reduction factor: x , = — = =0.4747
@ e -7 1.350+V1.350°—1.1187
A . .
Flexural buckling resistance: N, | »,= XS,Mfy = 0-4747:9200:275 _ 15015

1
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Flexural buckling around weak axis

1
The radius of gyration (z-z axis, see Fig. 9.3.4.1): i = j:\/%: 38.20mm

_ L
The non-dimensional slenderness: A, =—" i Zw%zl-gw , where
i .

=1 =86.81

L \/E 210000
1—71'
7, 275

According to EN 1993-1-1 Table 6.2 “c” buckling curve was chosen. The imperfection factor is:
a,=049 .

®.=0.5(1+0a.[ 4.~ 0.2+ 1.2)=0.5(1+0.49(1.809-0.2 )+ 1.809?|=2.530

Reduction factor: x .= L —= ! = = =0.2326
D VD —1 2.530+12.530°—1.809
A . .
Flexural buckling resistance: N, _ p,= XS/MIfy= 0.2326 91200 275 =588.5kN
Torsional buckling
The elastic torsional buckling critical force:
2 2
N, =tlcr+ZELe oL 150769.1217153+ Z210000:54039544948 ) _ 5,71
o, L, 176.0 6000

where iy is the polar radius of gyration:

i=Ai iy + 22 =161.82°+38.20°+0°+(68.3+92.0)>=176.0mm ,
0 y T, T YT 2

where y, and z, are the distances between the center of gravity and the shear center of the cross-
section respect to the principal directions (see Fig. 9.3.4.1).

_ A .
The non-dimensional slenderness for torsional buckling: A,= ny =] 932207(2102075 =0.8791
cr, T

According to EN 1993-1-1 Table 6.2 “c” buckling curve was chosen. The imperfection factor is:
a,;=049 .

®,=0.5(1+a (7, 0.2)+1,2)=0.5(1+0.49(0.8791-0.2)+0.8791*|=1.053
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Reduction factor: x ,= 1 —= 1 = 2=O.6125
D, +VP2—1, 1.053+11.053°—0.8791
A : .
Torsional buckling resistance: N, . p,= X;ley _ el 91200 275 _ 1550 kN

Torsional-flexural buckling.

The torsional-flexural buckling could be relevant by a mono symmetric section.

We need to find the roots of the following equation:

io(N=N, JIN-N, . (N=N,:)—-N’>yo(N—=N,. .)-N’z3(N—-N,, ,)=0

cr,y cr,y

Where in addition the quantities already calculated:

_ 7T El, _ 7°210000-35158841
S 6000°

cr

=2024kN and

_ 1’ EI. _ 7210000- 13426667
e g2 6000>

cr

=773.0kN

Yo=0mm ; z,=68.3+92=160.3mm the distance between the gravity center and shear
center respect to the principal directions (see Fig. 9.3.4.1).

iy =\ i+ yot zg=161.827+38.20"+0’+160.3°=176.0mm
Thus the third degree polynomial:

176’ (N —2024)(N —773)( N —3274)— N*0°(N —773)— N*160.3°(N —2024)=0
The roots of the equation (see Fig. 9.3.4.3):

N,=642.7kN ; N,=2024kN ; N,=23097kN
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|

—2000 /

0 2000 4000 6000 8000 10000 12000 14000 16000 16000 20000 22000 / 24

—-2000 /
—-4000 \
00

]\ /

—-10000

—-12000 /
—-14000 \

—-16000

Figure 9.3.4.3 — The roots of the third degree polynomial

Because the smallest root is smaller than the smallest clear critical elastic force thus the
torsional-flexural buckling is relevant in this case.

N,=642.7kN<N,_ =773.0kN<N,=N, =2024kN<N, ,=3274kN<N,=23097 kN

Therefore:
N, =N ,=642.7kN

The non-dimensional slenderness for torsional-flexural buckling:

- Af 9200-275
A= I =1.984
" \/NMF 642700 ?

D 15 =0.5( 1+ ctpp (75— 0.2) + 7727 =0.5 1+ 0.49(1.984—0.2)+ 1.9847|=2.905
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1 B 1
DD~ 2.905+12.905°—1.984°

A : .
Torsional-flexural buckling resistance: N, ;. /= XT;,Mny _ kD 91200 275 =503.2kN

=0.1989

Reduction factor: ) =

The statical system and the normal forces shown in Fig. 9.3.4.4.

-500
-500

| 00 kN

4
¥

Figure 9.3.4.4 — The statical system and the normal force diagram [kN] in FEM-Design

Fig. 9.3.4.5 shows the detailed results about torsional-flexural and torsional buckling in FEM-
Design.

The numerical result are almost identical with the hand calculations. The difference is less than
0.1%.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst170x/models/9.3.4 Buckling of a mono
symmetric channel section.str
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Figure 9.3.4.5 — Detailed results based on FEM-Design
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9.3.5 Lateral torsional buckling of a doubly symmetric I section

In this sub-chapter we will calculate the lateral torsional buckling resistance of an IPE 240 beam
under concentrated load. We will calculate according to EN1993-1-1:6.3.2.2 (general case) and
EN1993-1-1:6.3.2.4 (simplified assessment). The section is in Class 1 due to pure bending.

Yield strength of structural steel f, =355 MPa
Poisson's ratio v=0.3
Young's modulus E =210 GPa
Shear modulus G=E/(2(1+v))=80.77 GPa
Distance between lateral restraints L=60m
Height of the cross-section h =240 mm
Inertia around weak axis I,=2836341 mm*
St. Venant torsional constant I,= 127368 mm*
Warping constant I, = 36680292708 mm®
Plastic cross-sectional modulus around strong axis Wiy = 366645 mm’
1200 | B
iFE =25 kN
>
~ |41.9] |15.0 ¢ X7/77\ 5
2 Z p L=60m X/
T~ Y
6 s
> \v4
o o O -w— 7/
< o ()]
o~ ~N — Y
{2 ¥
===
R Bl M, =37.5 kNm

Figure 9.3.5.1 — The statical system and the cross-section

General case EN1993-1-1:6.3.2.2

k=1.0,k,=1.0 free to rotate about z axis and restraint against movements and free to warp
but restraint against rotation about the longitudinal axis.

The C; coefficients are depending on the loading and end restraint conditions:
C,=135,C,=0.63,C,=1.73

Because the cross section is doubly symmetric: z,=0 .
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The distance between the point of load application and the shear centre (this value has a sign):

h 240 .
zg=§=7=120mm see Fig. 9.3.5.1.

The calculation of the elastic critical moment:
2 2 2
TEL| |k V1, (KLSGI
My \/(k_) OG- (G2, iz
Z=C,z,—C;2,;=0.63-120—1.73-0=75.6 mm

M =135 +75.6°=75.6

o (1-6000)
M, =4632kNm

_ /4 .
Non-dimensional slenderness: 4, ;=1 ‘]’\ll’y /s =4 322?;3()%%5 =1.676

dtap(A;—02)+A,77 1+4021(1.676—0.2)+1.676°
2 2

72210000-2836341 (\/( 1 )23.668-1010+ (1-6000)°80769-127368
1

1] 2836341 72210000-2836341

D, =2.059

where the imperfection oyt factor value based on EN 1993-1-1 Table 6.4:

because %=%=2$2 rolled section therefore “a” buckling curve is relevant thus the

imperfection factoris «,;,=0.21

Reduction factor for lateral torsional buckling:

1 1
D, AND, =X, 2.0594+12.059°1.676

Xir —0.3072

The lateral torsional buckling resistance:

Sy _ 03072 360645355 _ 30 901 nm

Py Y 1.0

M, =X W
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Simplified assessment EN1993-1-1:6.3.2.4

In this method we check the buckling of an equivalent T section, where the compressed flange is
the same as in the original section, the web height is third of the compressed web height.

Note: We simplify the equivalent section, we are not considering roundings.

The height of the section: 220.4/2/3+9.8 = 46.5 mm (see Fig. 9.3.5.1-2).

120.0

46.5

%LG.Z

Figure 9.3.5.2 — The equivalent T section

The area and the inertia about the original weak axis of the cross section:
A4,=9.8-120+6.2:(46.5—9.8)=1404 mm’
1,.=9.8-120°/12+(46.5-9.8)6.2°/12=1412000 mm"*

The relevant radius of gyration of the equivalent T section:

1 1412000
=y = =31.72
oz \/Af \/ 1403 i

Non-dimensional slenderness:

- _k.L _ 0.86-6000
TigA 31.72:76.41

=2.129

where A,=nx \/ f£ =1 \/ 2 13050500 =76.41 and k.depends on the moment distribution.
y

o I HOAT=02)42," 14049(2.129-0.2)+2.129°
= _
2 2

where the imperfection factor comes from buckling curve “c”:  «a ,=0.49

=3.239
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Reduction factor for lateral torsional buckling:
@+, 3.239+13239°-2.129°

X1 —0.1760

The lateral torsional buckling resistance:

M,,,Rd=kﬂ;¢”WpL”{—A2= 11 -0.1760-366645%=25.20kNm

Fig. 9.3.5.3 shows the FEM-Design statical system and the bending moment diagram.

5.0 kN

Lt |

| |

Figure 9.3.5.3 — The statical system and the bending moment diagram [KNm] based on FEM-Design

The differences between the hand and FEM-Design calculations are less than 2%.
See Fig. 9.3.5.4 about the detailed results of FEM-Design.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst1 70x/models/9.3.5 Lateral torsional buckling of a
doubly symmetric I section.str
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Figure 9.3.5.4 — The detailed results about the lateral torsional buckling based on FEM-Design
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9.3.6 Interaction of biaxial bending and axial compression in an RHS section

In this sub-chapter the stability interaction of an RHS section (KKR 200x100x10, cold formed
hollow section) will be investigated. The statical system and the design load values are indicated
in Fig. 9.3.6.1, furthermore the other general input data are in the table below.

Yield strength of structural steel fy =355 MPa
Poisson's ratio v=0.3

Young's modulus E =210 GPa

Shear modulus G=E/(2(1+v))=80.77 GPa
Span length L=6.0m
Cross-sectional height h =200 mm
Cross-sectional width b =100 mm
Cross-sectional thickness t=10 mm
Cross-sectional area A= 5257 mm?

Inertia around strong axis I, = 24443956 mm*
Inertia around weak axis I, = 8177434 mm*

St. Venant torsional constant I,=21571134 mm*
Warping constant I, = 4313360830 mm®
Elastic cross-sectional modulus around strong axis Wiy = 244440 mm®
Elastic cross-sectional modulus around weak axis W = 163549 mm’®
Plastic cross-sectional modulus around strong axis W,y = 318082 mm’
Plastic cross-sectional modulus around weak axis Wiz = 195250 mm’

According to the EN1993-1-1 the section is in Class 1 due to pure bending in both directions
and also under normal force. The calculation will be performed with EN1993-1-1 Annex A —
Method 1 and with Annex B — Method 2 regarding to get k;; interaction factors.
The characteristic normal force resistance:

N =4 f,=5257-355=1866kN
The characteristic bending moment resistance around strong axis:

M, w=W, . f,=318082-355=112.9 kNm

The characteristic bending moment resistance around weak axis:

M_ =W, .f,=195250-355=69.31 kNm

RRY
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Flexural buckling around strong axis

I,
The radius of gyration (strong axis): i = sz\/ % =68.19mm
. . — o 16000 1
Th -d 1 slend DA E=— g =————=1.152 h
e non-dimensional slenderness =7 7.~ 63.19 7641 , where

E, _ [210000
A=y 2= ~76.41
! ”\/fy 7355

The imperfection a factor value based on EN 1993-1-1 Table 6.2:

cold formed hollow section therefore “c” buckling curve is relevant thus the imperfection factor
is a,=0.49
¥y

®,=0.5|1+a,(4,~02]+1,’|=0.5[1+0.49(1.152-0.2)+ 1.152°|=1.386

y

1 _ 1
@ VD~ 1386+11386’—1.152

Reduction factor:  x = =0.4637

q,~8 kN/m

i

AY = 3.0m

> Fy =20 kN l # N, =80 kN
| X o
| X >

V /]
) vy

Figure 9.3.6.1 — The statical system, the cross-section and the design loads and internal forces in the global
system
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Flexural buckling around weak axis

The radius of gyration (weak axis): 1/ =4 81572754734 39.44m

1 _ 6000 =1.991 , where

M 39.44 76.41

The non-dimensional slenderness: )L =

E, _ [210000
A=y 2= \/ ~76.41
! ”\/fy T\ 355

I

z

The imperfection a factor value based on EN 1993-1-1 Table 6.2:

cold formed hollow section therefore “c” buckling curve is relevant thus the imperfection factor
is a.=0.49 .

®.=0.5(1+a.[ 4.~ 0.2+ 1.2)=0.5(1+0.49(1.991-0.2]+1.9912|=2.921

Reduction factor: .= ! = ! =0.1977

D AP -1 2.921+42.921°—-1.991°

Lateral torisonal buckling general case according to EN1993-1-1:6.3.2.2

The major axis bending (around strong axis) is relevant according to EN1993-1-1:6.3.2.1

k=1.0,k,=1.0 free to rotate about weak axis and restraint against movements and free to
warp but restraint against rotation about the longitudinal axis.

The C; coefficients are depending on the loading and end restraint conditions:
C,=135,C,=0.63,C,=1.73

Because the cross section is doubly symmetric: z,=0 .

The distance between the poit;t og (l)%ad application and the shear centre in the relevant direction

(this value has a sign): RN 100 mm see Fig. 9.3.6.1.

The calculation of the elastic critical moment:

7’El, \/( k )2 1, (kL)GI,

(kL) ot 4 (Cy 2, C3 2, = (Cy2,~Cz))

I. 7’El
Z=C,z,—C,z,=0.63-100—1.73-0=63.0mm

=Ci——

k.,

M =135 +63.0°—63.0

- (1-6000)°

72210000-8177434 \/1 74.313-10” , (1-6000)°80769-21571134
1] 8177434 72210000-8177434
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M, =1183kNm

L - _ Wy fy_ |318082-355
Non-dimensional slenderness: A, = !X/,Iy > = 1183 000000=0.3090

cr

_1 o, (Agr—02)+ A, _1+0.76(0.3090-0.2)+ 0.3090°

()]
LT 2 2

=0.5892

where the imperfection oy factor value based on EN 1993-1-1 Table 6.4 thus “d” buckling curve
is relevant. The imperfection factoris «,,=0.76 .

Reduction factor for lateral torsional buckling:
1 1

= S _ _=0.9167
D, D, — X, 0.5892+10.5892°—0.3090

Xir

Interaction factors according to EN1993-1-1 Annex A — Method 1

Auxiliary terms:

A o= Max s |=max| 1152 |1 991
7. 1.991

Calculation of the non-dimensional slenderness due to uniform bending moment:

The calculation of the elastic critical moment due to uniform bending moment:

_TEL Q+L2G1t:7r2210000-8177434\/4.313-109+60002-80769-21571134
“ 2 VI, 7EI 6000° 8177434~ 77210000-8177434

M _,=905.7kNm

=0.3531

Wt :\/318082-355
M 905700000

cr

Non-dimensional slenderness: 4, 2\/

The elastic flexural buckling forces:

_ 7T El, _ 7°210000-24443956

. =1407kN
oyt 6000’

_ 7 El.. _ 72210000-8177434
12 6000°

=470.8kN

cr,z
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Because the section is doubly symmetric the elastic torsional-flexural buckling force:
Ncr, TF:Ncr,T
The elastic critical torsional force:

- 1 (80769-21571134+

 68.19°+39.44°

1
Ncr,T: .2 .2
1,7t

N, =N, ;=280800kN

1’El,
L2

cr

2 9
I+ 72210000-4.313-10 )

6000°

Because:

/1‘0:0.3531>0.2JE‘\‘/

N N 80 80
1——E || 1—— :0.2\/1.35‘\‘/1—— 1 =0.2218
N )( 470.8

o]\ N ~ 280800
Thus:
Cmy,OZ 1 —0.18% =1-0.18 %37:0.9898
ot S

y

Mg A4 30-10° 5257

£,= =8.065

" Np Wa, 80-10° 244440
£ a .
c, =C, ,+(1-C, O)Jy—j:0.9898+(1—0.9898) V8.065-0.1175 =0.9924
v YO +VE ALy 1++8.065-0.1175
N g 80
c _=C, ,=1+0.03 =1+0.03——=1.005
mz mz,0 o 4708
Cfny arr 0.9924> 0.1175
C,,.r=max 1— Nk 1— Nea | |=max \/ 1— 80 1— 80
N, . N, 470.8 280800
1 1
C. —max 0.11270]:1
_, M M 30 36
b, .=0.5a, .4, v B 20 —0.50.1175-0.3531° =0.001103
LT rto XM oy pa Mo - ra 0.9167-112.9 69.31
Ao M, s 035312 30
¢, .=10a 3 > =10-0.1175 — =0.002066
LT S A Co XM ke 54+1.991* 0.9924-0.9167-112.9
dLT=2a A’_O My,Ed Mz,Ed

LTO-1+A_24 CmyXLTMpl,y,Rd szMpl,z,Rd

RR]
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0.3531 30 36 _ (0007921

d,;=2:0.1175

0.1+1.991* 0.9924-0.9167-112.9 1.005-69.31

_1.7-0.1175-0.3531 30 =0.001303

A’_O My,Ed

eLT=1.7aLTO "

N4
W
1.5

Wy:mll'l

[w
Wel,
1.5

w_=min

NEd

ply'

el,y'

pl,z’

2 Co Xt M 1y v 0.141.991*  0.9924-0.9167-112.9
318082

=min| 244440 |= min
15

[1-301]:1.301
1.5

195250
=min| 163549 (=min
1.5

1194\ =1.194
1.5

2!

80 =0.04287

n =
o N wi ¥ i1

W =max

C

C

y

=max

C

Yy

=max
10

C . =max

C,,=max

1+

0.

~1866/1.0

1.6

0.9924*1.991 —
1.301

244440
318082

1.6

2 2
1301 0.9924°1.991 )0.04287 0.001103]

(1.301—1)[(2—

9324

=0.9324
7685

1.005*-1.991°

45

0.8241

)0.04287 —0.002066]
0.4815

1+(1.194—1)[(2—14

6 [1.194 163549
V1 1.301 195250

=max[ ]=0.8241

0
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C 25 2
1+(w,—1)[{ 2—14 ’”yws’”“" n,—d;
C_,=max y
0.6 &M
| WZ Wpl,y' |
2 2
1+(1.301—1)[(2—140'9924 1991 )0.04287—0.0007921]
€= max 1.301
0.6.[1301 244440
2\ 1.194 318082
C.,=max| 9836310 8363
0.4813
1+(Wz_1)[(2_&Cfnzlmax_ﬁCfnzﬂ’maxz)npl eLT]
C_=max z z
Wel,z
] Wpl‘z -
1.6 ) 1.6 21 aar?
1+(1.194—1)|[ 2= —2-1.00571.991 — ——1.005°1.991> |0.04287— 0.001303
C —max 1.194 1.194
- 163549
_ 195250
C_=max| %2493 |=0.9493
0.8376
1 N |80
N
=m0~ 0.9687
_ Ed 1_ 4 -
1 ‘ 046377407
cr,y
N
0= oz 4708 _ 8589
1=y New 10197730
Xz 470.8

cr,z
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And finally the interaction factors based on the auxiliary terms:

u 1 0.9687 1
k =C C ., .—2Y _— =09924-1 =1.093
P Ny G, |80 0.9324
N 1407
cr,y
u 1 w 0.9687 1 1.194
k =C ————0.6 £=1.005 0.6 =0.8180
PO TN, C) \/wy 8008241 V1301
B N, . 470.8
w, 1 |w, 0.8589 1 1301
k.=C C —=Z —0.64/—2=0.9924-1 0.6,/———=0.6768
zy my ~ mLT . NEd Czy \/Wz 1— 80 0.8363 1.194
N, 1407
u 1 0.8589 1
k. =C ——= —_——=1.005 =1.095
=T TN L [__80_0.9493
=3 470.8
The interaction formulas:
N M M . .
Ed +kyy v, Ed +kyz 2, Ed _ 80 " 1.093-30 + 0.8180-36 —0.8342
P XM, M. 046371866 0.9167-1129 6931
Y mi Y i Y mi 1.0 1.0 1.0
N M M . .
Ed +ka . Ed tk. 2 Ed _ 80 n 0.6768-30 " 1.095-36 —0.9818
X Nue P A M, 7M. 5 0.1977-1866  0.9167-112.9  69.31
Y mi Y wmi Y v 1.0 1.0 1.0

The hand calculation and FEM-Design calculation are almost identical to each other considering
Annex A (Method 1). The difference is less than 0.5%. See Fig. 9.3.6.2 about the detailed FEM-
Design results.

Interaction factors according to EN1993-1-1 Annex B — Method 2

Due to the concentrated load in the weak direction (bending around major axis) EN 1993-1-1
Table B.3:

C,,=09

my

Due to the uniform load in the strong direction (bending around minor axis) EN 1993-1-1 Table
B.3:

C,.=0.95

339




Verification Examples FEM-Design 18

The interaction factors according to EN 1993-1-1 Table B.1:

_ N 80
C,p| 1+(A4,—0.2) —=— 0.9 1+(1.152—o.2)—1866
N 0.4637 =7
k ,,=min Y | — min :
N 80
Cmy 1+08 Ed 09 1+08W
Ny 0.4637 2
Xy yMI 10
k. =min| %9792 |-0 9666
» 09666
_ N 80
C, |1+(X.—02)—L 0.95| 1+(1.991 —0.2)W
NRk 01977W
k__=min *Y w1 = min '
c 1ros e 0.95 1+0.8%
N i 0.1977 =
XY 1.0
k_=min| 1319 |=1.115
1115
k,.=0.6k,=061.115=0.669 ; k,=0.6k,=0.6-0.9666=0.580
The interaction formulas:
N M M . .
Ed +kw ONED +kyz 2, Bd _ 80 n 0.9666-30 n 0.669-36 —0.7201
P XM, M4 04637-1866  09167-1129  69.31
Y mi Y mi Y mi 1.0 1.0 1.0
N M M . .
B p v, Ed +h 2, Ed _ 80 n 0.580-30 _|_1.115 36:0.9641
XNe P xM, 7M., 0.1977-1866  0.9167-112.9 ' 69.31
Y mi Y mi Y mi 1.0 1.0 1.0

The hand calculation and FEM-Design calculation are identical to each other considering Annex
B (Method 2). See Fig. 9.3.6.3 about the detailed FEM-Design results.

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst170x/models/9.3.6 Interaction of biaxial bending

and axial compression in an RHS section.str
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9.3.7 Interaction calculation with a Class 4 section

This chapter is unfinished.
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9.4 Timber design
This chapter is unfinished.
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9.5 Automatic calculation of flexural buckling length

9.5.1 Concrete frame building

In this example we will calculate the buckling lengths of the indicated isolated columns (C.1;
C.4, see Fig. 9.5.1.1) according to EN 1992-1-1:2004 Chapter 5.8.3.2. After the hand calculation
we will compare the results with the FEM-Design automatic buckling length calculation results.

The geometry is shown in Fig. 9.5.1.1. The material is C25/30 the columns have 300/300 mm,
the beams have 300/500 mm cross-sections. We will calculate the buckling lengths of the middle
isolated columns at the ground floor and at the first floor. The supports are fixed at the bottom of

the ground floor columns.

C8
Cc7
Cc9

C.5
C.4
C.6

C2
C1
C3

Figure 9.5.1.1 — The concrete planar frame geometry

9.5.1.1 Non-sway case

If the frame is a non-sway frame the method according to EN 1992-1-1:2004 Chapter 5.8.3.2. is
the following:

The bending stiffness of the columns:

0.3*

EI.=31000000- 2 =20925kNm”’

The bending stiffness of the beams in the relevant direction:

3
03:0.5 _96875KkNm?

EI.=31000000-
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C.1 column (see Fig. 9.5.1.1):
The distribution factors:
At bottom:

k,=0 (fixed support);

At top:
20925 20925
+
:(Elc/Lc4)ab0ve+(EIc/Lc1)below: 3 4 :O 189
’ > cElIL, , 96875 96875
6 6

By the beams rotational stiffnesses we assumed a single curvature due to the non-sway situation.

The beta factor of the buckling length:

L., k, , \/ 0 0.1896
=—"=054|1+———|[ 1 +—————|=0.54/[ 1 + 1+ : =0.569
B fh \/ 0.45+k, ( 0.45+k, 0.45+0 0.45+0.189
C.4 column (see Fig. 9.5.1.1):
The distribution factors:
At bottom:
20925Jr 20925
k _ (EIC/LC4)abOVe+(EIC/LCI)bCIOW _ 3 4 =0.189
" > cEIIL T 96875 96875
bt b 2 c +2 c

By the beams rotational stiffnesses we assumed a single curvature due to the non-sway situation.

At top:
20925 +20925
k — (E[c/Lc7)above+(E[c/Lc4>below — 3 3 :0 216
2 S CEILIL 96875 . 96875
br b 2 G +2 5

By the beams rotational stiffnesses we assumed a single curvature due to the non-sway situation.

The beta factor of the buckling length:

L., 0.189 0.216
= _.5. — %7 14—
b L \/ 0.45+0.189 0.45+0.216

1+ )=O.655
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Based on FEM-Design auto buckling length calculation method the results are:
B 1pen=0.576

B 4pen=0.663

The difference between the calculations is less than 1.5%. Fig. 9.5.1.2 shows the results based
on FEM-Design.

< g T
ﬂ{

7

9 +

L

Figure 9.5.1.2 — The buckling lengths of the columns in non-sway case
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9.5.1.2 Sway case

If the frame is a sway frame the method according to EN 1992-1-1:2004 Chapter 5.8.3.2. is the
following:

C.1 column (see Fig. 9.5.1.1):
The distribution factors:
At bottom:

k,=0 (fixed support);

At top:
20925 | 20925
_|_
_ (E]c/Lc4)above+(EIC/Lcl)below _ 3 4 =0.063
2= S ¢El,L, (6875 96875
6 6

By the beams rotational stiffnesses we assumed double curvature due to the sway situation.

The beta factor of the buckling length:

k, -k .
I \/1+10 L2 \/1+10—0 G
B,=— =max kitk, =max 0+0.063 =1.06
ol k, k, 0 0.063
. 1+—|[1+——=—
e [V e ( 110 1+0.063

C.4 column (see Fig. 9.5.1.1):

The distribution factors:

At bottom:
20925 20925
+
_ (EIC/Lc4)above+ (EIC/LCI )below — 3 4 =0.063
1 Z CElIL, 6 96875 46 96875 '
6 6

By the beams rotational stiffnesses we assumed double curvature due to the sway situation.

At top:
20925 20925
+
_ (EIC/LC7)abOVC+(E]C/LC4>bCIOW _ 3 3 _ O 072
o > cEl/L, 96875 | 96875
6 6
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By the beams rotational stiffnesses we assumed double curvature due to the sway situation.

The beta factor of the buckling length:

0.063-0.072
1410 =22
\/ 0.063+0.072  |_| 156
0063 \[,, 0072
1+0.063 1+0.072

Based on FEM-Design auto buckling length calculation method the results are:
ey =1.07

ﬁ4FEM:1-15

The difference between the calculations is less than 1%. Fig. 9.5.1.3 shows the results based on
FEM-Design.

<
.
|

D 1 —+p

Figure 9.5.1.3 — The buckling lengths of the columns in non-sway case

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst180x/models/9.5.1 Auto Buckling length
concrete building.str
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9.5.2 Steel frame building

In this example we will calculate the buckling lengths of the indicated isolated columns (C.2;
C.6, see Fig. 9.5.2.1) according to the method in Ref. [17] which is basically indentical with the
given method in the former ENV 1993-1-1:1992 Annex E. After the hand calculation we will
compare the results with FEM-Design automatic buckling length calculation results.

The geometry is shown in Fig. 9.5.2.1. The material is S235, the outer columns have HEB220,
the inner columns have HEB260, the beams have IPE450 and the beams at the roof have IPE360
cross-sections. We will calculate the buckling lengths of the middle isolated columns at the

ground floor and at the first floor. The supports are hinged at the bottom of the ground floor
columns.
9.5.2.1 Non-sway case

If the frame is a non-sway frame the method according to Ref. [17] is the following:
The bending stiffness of the columns (HEB260):

EI.=210000000-0.0001492 =31332kNm’
The bending stiffness of the beams (IPE450):
EI,=210000000-0.0003374=70854 kNm’

o
el
QO

C.10
HE-B 260
Ci1
HE-E 260
c12
HE: 220
3.50

o

—-=2
B
—-=5
B

3.50

4 4 4
nd g ~9 .=
=8 Fal- je =
Y 94 O ©d
4 E: E:

4 4 4
-y e o <y
Y 9 O ©d

4 4 E: E:

3.50

N N N |
T~ 650 N 6.50 I 650 I

Figure 9.5.2.1 — The steel planar frame geometry

The rotational stiffness coefficient of the columns being analyzed (C.2 and C.6):

EI
K =47c=431332 35808 1Nm
L. 35

c
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C.2 column (see Fig. 9.5.2.1):

The distribution factors:

At bottom:

n,= KC =1.0 (hinged support)
At top:

c EIC
4 +4
7= KA+ K,y _ L. L _ 35808+35808
27 - =
K +K,+K,+K, 4 E1c+4 E]c+2EIb+2E]b 35808+35808+270854 49 70854
L, L, L, L, 6.5 6.5
17,=0.622

By the beams rotational stiffnesses we assumed a single curvature due to the non-sway situation.

The beta factor of the buckling length:

_1+0.145(n,+n,)—0.2657,17, 1+0.145(1.0+0.622)—0.265-1.0-0.622
2 2-0.364(n,+1,)—0.247n,n, 2-0.364(1.0+0.622)—0.247-1.0-0.622

B,=0.852

C.6 column (see Fig. 9.5.2.1):

The distribution factors:

At bottom:
4EIC+4EIC
=k +I§C++Ifl+K T E ;1 ;1 EI, 35808+73388;)j 70854
e W2 g ey q ey b 770 3580843580842 +2
L. L. L, L, 6.5 6.5
n,=0.622

By the beams rotational stiffnesses we assumed a single curvature due to the non-sway situation.

At top:
EI, EI,
4—C44
7= K.+K, . L, L, _ 35808+35808
27 —_— =
K, +K,+K,+K,, A EIC+4 EIC+2EIb+2EIb 35808+358O8+270854 L 70854
L, L, L, L, 6.5 6.5
17,=0.622
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By the beams rotational stiffnesses we assumed a single curvature due to the non-sway situation.
The beta factor of the buckling length:

_ 140.145(n,+1,)—0.2659,17,  140.145(0.622+0.622) —0.265-0.622-0.622
6 2-0.364(n,+n,)—0.2471n,n, 2—0.364(0.622+0.622)—0.247-0.622-0.622

B,=0.743

Based on FEM-Design auto buckling length calculation method the results are:

B s =0.852
ﬁ6FEM O 742

The calculations are identical to each other (see Fig. 9.5.2.2).

s e e e S e S

e Su
% X
e St

/(T“’\{ T

%
.

Figure 9.5.2.2 — The buckling lengths of the columns in non-sway case

l/g\\
| —p—

9.5.2.2 Sway case

If the frame is a sway frame the method according to Ref. [17] is the following:
C.2 column (see Fig. 9.5.2.1):

The distribution factors:

At bottom:

n,= KC =1.0 (hinged support)

c
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At top:

4EIC+4EIC
7= K +K, _ L, L, B 35808 +35808
27 — =
K +K,+K,+K,, A EIC+4 EIC+6 E1b+6 El, 36008+ 3580846 10854 | c 70854
L, L, L, L, 6.5 6.5
1n,=0.354

By the beams rotational stiffnesses we assumed double curvature due to the sway situation.

The beta factor of the buckling length:

P =\/1—0.2(1.0+0.354)—0.12-1.0-0.354
7 ¥ 1-0.8(1.04+0.354)+0.6-1.0-0.354

B,=2.305

C.6 column (see Fig. 9.5.2.1):

The distribution factors:

At bottom:
EI, EI,
4—=<+4
7= K.A+K, _ L. L, _ 35808+35808
""" K+K,+K,+K, EI, EI, EI, EI, 70854 | 70854
¢ 4—C414—_—°46 16 35808+35808 +6 +6
L. L L, L 6.5 6.5
n,=0.354

By the beams rotational stiffnesses we assumed double curvature due to the sway situation.

At top:
C E]C
4=—"<414
7= K +K, _ L, L, B 35808+35808
27 — =
K +K,+K,+K,, A EIC+4 E]c+6 E1b+6 El, 3e008+ 3580846 10834 | 70854
L, L, L, L, 6.5 6.5
1,=0.354

By the beams rotational stiffnesses we assumed double curvature due to the sway situation.

The beta factor of the buckling length:

5 :\/1—0.2(0.354+0.354)—0.12-0.354-0.354
%V 1-0.8(0.354+0.354)+0.6-0.354-0.354

B,=1287
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Based on FEM-Design auto buckling length calculation method the results are:

ﬁzFEM:2-31
= L)

The calculations are identical to each other (see Fig. 9.5.2.3).

Figure 9.5.2.3 — The buckling lengths of the columns in sway case

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst180x/models/9.5.2 Auto Buckling length steel
building.str
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9.5.3 A column and a supporting beam with various angles

Fig. 9.5.3.1 shows the analyzed problem. The vertical column is HEB260 and the bottom is
fixed. The horizontal supporting beam is IPE360 and connected to the upper end of the column
(the other end of the beam is simply supported). The angle of the connecting beam is varied
between 0°-90°. The plain of the various angle beams is perpendicular to the column (see Fig.
9.5.3.1) thus the supporting beam is always horizontal.

The connecting beam rigidity has effect on the stiff and the weak buckling lengths of the
column. After the calculation of the buckling lengths of the column based on the solution of the
stability eigenvalue problem (stability calculation) we compared the beta factors with the FEM-
Design automatic flexural buckling calculation results.

IO~

[

Figure 9.5.3.1 — The fixed column with various angle supporting beam

Around the stiff direction the buckling length is increasing because the supporting effect of the

connecting beam is decreasing. Around the weak direction the buckling length is decreasing
because the supporting effect of the connecting beam is increasing (see Fig. 9.5.3.1, Table

9.5.3.1-2).

The critical forces of the hinged-hinged column (so-called Euler force) based on the stability
calculation in FEM-Design are:

F.,=11672kN around stiff direction,
F.,=4230kN around weak direction.

Be careful, these values contain the shear deformations and not only the deformation from
bending because in FEM-Design the beam modell is the Timoshenko modell.
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For example the beta factor around stiff direction based on the solution of the stability
eigenvalue problem when the o angle is equal to 76°:

e F 11672
stiff crl

. = — = =0.714
76 F;fo 22877

Angle Critical load | Beta factor Beta factor Difference
[degree] [kN] Eigenvalue |AutoBucklingl.ength [-]

0 30373 0,620 0,589 -0,0499
14 29948 0,624 0,592 -0,0517
27 28899 0,636 0,600 -0,0559
37 27665 0,650 0,611 -0,0593
45 26552 0,663 0,623 -0,0604
53 25410 0,678 0,638 -0,0587
63 24076 0,696 0,660 -0,0521
76 22877 0,714 0,686 -0,0396
90 22372 0,722 0,700 -0,0309

Table 9.5.3.1 — The beta factor around the stiff direction in the function of the given angle

Angle Critical load | Beta factor Beta factor Difference
[degree] [kN] Eigenvalue |AutoBucklingl.ength [-]

0 8600 0,701 0,700 -0,0019
14 8963 0,687 0,665 -0,0320
27 9811 0,657 0,616 -0,0619
37 10737 0,628 0,587 -0,0648
45 11523 0,606 0,571 -0,0576
53 12295 0,587 0,560 -0,0453
63 13171 0,567 0,551 -0,0277
76 13952 0,551 0,545 -0,0102
90 14284 0,544 0,543 -0,0022

Table 9.5.3.2 — The beta factor around the weak direction in the function of the given angle

The differences between the two calculation methods are less than 6% (see Table 9.5.3.1-2). In
FEM-Design by the automatic beta factor calculation the column was assumed as a non-sway
column according to the original supporting condition (see Fig. 9.5.3.1).

Fig. 9.5.3.2 shows the tendency of the beta factors in function of the supporting beam angle.
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0.80 Buckling length factor comparison

0,70

0,60
go 0
+ ,5
&
<
h53
m0‘40 —— & —— Eigenvalue 1
——&— AutoBucklingLength 1
—— B — Eigenvalue 2
0,30 ——%—— AutoBucklingLength 2
0,20
0 10 20 50 60 70 80 90

30 40
Angle of the connecting beam [degree]
Figure 9.5.3.2 — The tendency of the beta factors (stiff 1, weak 2) in the function of the various angle

Download link to the example file:

http://download.strusoft.com/FEM-Design/inst180x/models/9.5.3 A column and a supporting
beam with various angles.str
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10 Cross section editor

10.1 Calculation of a compound cross section

An example for compound cross section is taken from [7] where the authors calculated the cross
sectional properties with the assumption of thin-walled simplifications. The welded cross section
is consisting of U300 and L160x80x12 (DIN) profiles. In the Section Editor the exact cold

rolled geometry was analyzed as it is seen in Figure 8.1.1.

——

—

s I

Figure 8.1.1 — The analyzed cross section

The following table contains the results of the two independent calculations with several cross

sectional properties.

Notation Ref. [1] Section Editor
A [em?] 86.76 86.30
yo[cm] 1.210 1.442
zg[cm] 19.20 19.22
y's[cm] 1.39 0.7230
z's[cm] 10.06 10.36
I,[em?] 11379.9 11431.2
L[cm?] 4513.3 4372.9
I.[cm*] 3013.2 3053.5
I,[cm*] 48.83 52.11
I, [cm®] - 203082.0

Table 8.1.1 — The results of the example
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Download link to the example file:

http://download.strusoft.com/FEM-Design/inst170x/models/8.1 Calculation of a compound
cross section.sec
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