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List of symbols

Scalars

aw,RMS,e vertical weighted RMS acceleration at point e from excitation at point e

aw,RMS,e,r vertical weighted RMS acceleration at point r from excitation at point e

fp excitation frequency

fn eigenfrequency of the n-th eigenshape

h the number of the excitation harmonic under consideration

n the number of the eigenvector under consideration

ne effective number of people

t time

v velocity of walking

Dn,h dynamic magnification factor for accelerations by the n-th mode shape for the 
the h-th harmonic

Dn square-root sum of squares of the dynamic magnification factor for displacements
by the n-th mode shape

FIn impulsive force for the n-th mode shape

Fh the excitation force amplitude for the h-th Fourier harmonic

Lp length of the walking path

Mn modal mass of the n-th mode shape (in FEM-Design the eigenvectors are 
normalized to the mass matrix, therefore the modal mass is always 1 tonne)

N footstep is the number of footsteps.

Q the static force exerted by an average person

R response factor at a point

W weighting factor

αh h-th Fourier coefficient

δ logarithmic decrement

μe,n vertical translational value of the n-th mode shape vector at the excitation point

μr,n vertical translational value of the n-th mode shape vector at the response point

ζ critical damping ratio

ρ resonance build-up factor
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Vectors

aRMS RMS acceleration vector

μn the eigenvector of the n-th mode shape

fh the excitation force amplitude vector for the h-th Fourier harmonic

q the load vector for the rhythmic crowd load from the excitation load case

Abbreviations

RMS root-mean-square
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1 Footfall analysis

1.1 Theoretical background

By a footfall induced vibration of a structure (e.g. floors) the dynamic response can be split into
two parts. These two parts are the transient and the steady-state vibrations (see Ref. [1][2][4]). If
the structure is relatively stiff then the transient response is more significant than the steady-
state,  but  if  the  structure  is  less  stiff  then  the  steady-state  response  is  remarkable  and  the
transient part is negligible.

If the transient response is dominant then the applied excitation force will behave a series of
impulses instead of a continuous function. The transient vibration can be understood as a series
of damped free vibrational response of the system therefore the response mainly depend on the
properties of the structure (e.g. eigenfrequency, mass and damping) and not from the frequency
of the excitation force. Fig. 1 shows a typical time-acceleration diagram of a transient vibration.

The steady-state response is when the wavefront has settled down. In this case resonance can
appear if one of the eigenfrequencies of the structure is equal to the excitation frequency or its
harmonics (integer multiple of the excitation frequency due to the Fourier series as harmonic
excitation force). In this case the transient solution is negligible beside the steady-state solution
and the amplitude of the acceleration becomes constant after a while (see Fig. 2) thus time is
need for the evolution of the steady-state amplitude. Therefore if a walking path is sufficiently
short a steady-state resonance condition may not be reached.
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Figure 1 – Typical time-acceleration diagram by a transient dominant vibration
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In FEM-Design the main purpose is to calculate the vibration behaviour of the floors (mainly
accelerations,  response  factors  and  dynamic  amplification  factors).  There  are  different
calculation methods regarding the type of  excitation forces and standardizations. 

There are several basic assumptions in FEM-Design by the footfall analysis. According to these
assumptions the users should consider and adjust some parameters before the calculations to get
appropriate results:

– By the necessary eigenfrequency/vibration shape calculation only the vertical masses will
be considered to avoid the not relevant shapes to the task. The excitation force is vertical
and the response is dominantly also vertical. 

– The excitation frequency is in a range (thanks to the phenomenon, there are a  minimum
frequency and  a  maximum  frequency value  of  the  considered  walking  frequency  as
excitation force). Thus the calculations should be done with several excitation frequencies
in the mentioned interval and get the most unfavourable results. Frequency steps give the
number of the considered excitation frequencies in the given interval.

– Calculations  will  be performed with  the  eigenfrequencies  which  are  under  the  cut-off
eigenfrequency.  To  avoid  the  numerical  contradictions  the  last  of  the  considered
eigenfrequencies will always be greater than the cut-off eigenfrequency.

– During the footfall analysis calculation the considered damping is constant and it is given
with a ratio between the damping and the critical  damping in [%].  This is  the  critical
damping ratio ( ζ ).  In some references (e.g. Ref. [3]) the logarithmic decrement ( δ ) is
given  as  damping  parameter.  The  mathematical  connection  between  the  logarithmic
decrement and critical damping ratio: δ = 2 π ζ .
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Figure 2 – Typical time-acceleration diagram by a steady-state dominant vibration
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There are several ways to present the acceleration of a system. The most obvious is the largest
acceleration. However, this gives no indication as to the amount of time the system is subjected
to this  level of acceleration.  Instead of the largest acceleration the root-mean-square (RMS)
acceleration is widely used. The RMS acceleration is calculated as follows:

a RMS=√ 1
T
∫
0

T

a (t )2 dt , (Eq. 1)

where T is the period under consideration, a(t) is the acceleration function and t is time.

The  response  factor  of  a  floor  (according  to  Ref.  [2])  is  the  ratio  between  the  calculated
weighted  RMS acceleration  from either  the  steady-state  or  transient  methods  and the  ‘base
value’ given in BS 6472. The vibration response is considered to be satisfactory for continuous
vibrations when the calculated response does not exceed a limiting value appropriate to the
environment (which is expressed in BS 6472 and ISO 10137 as a multiplying factor. For vertical
vibrations the response factor R is given by:

R=
aRMS

0.005
(Eq. 2)

The response factor is a unitless number and it is calculated in the same way by the different
excitation methods.

In FEM-Design there are three different excitation methods:

– Self excitation 

– Full excitation

– Rhythmic crowd load 

You can find the details about these methods below.
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1.2 Different excitation methods

1.2.1 Self excitation

In this case the excitation force is one concentrated vertical force. Self excitation analyses the
response in the same node to which the excitation force is applied. It means that the excitation is
in the same node where we calculate the response (e=r). For example thus it means that the
concentrated excitation force is applied at node number 1 and the response is calculated here
also. The response in node number 2 comes from the exicitation force which was applied on
node number 2 and so on (see Fig. 3). This method is usually proper for walking activities and
response analysis according to Ref. [2]. 

Here  the  user  should  select  region(s) where  the  excitations  and  responses  will  be
calculated/evaluated.  The  results  will  be  available  on  the  different  selected  region(s)
individually. 

The user should adjust the number of footsteps, the mass of the walker (it is usually around 76
kg),  the  frequency  weighting  curve (see  Subchapter  1.3)  and  the  Fourier  coefficients (see
Subchapter 1.4).

1.2.1.1 Steady-state accelerations

According to  the informations in the introduction one of the accelerations which should be
calculated  is  the  steady-state  RMS  acceleration.  The  steady-state  weighted  vertical  RMS
acceleration  in  a  node  where  the  excitation  force  is  considered  comes  from the  following
equation:

aw ,e , RMS [ steady state ]=ρ
1
√2 √∑h=1

H

(∑n=1

N

(μe , n
2 F h

M n

Dn ,h W h))
2

, (Eq. 3)
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Figure 3 – The self excitation method: the response point equal to the excitation point
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where:

– H  is the total number of the considered harmonics.

– N  is the total number of the considered eigenfrequencies.

– μ e , n is the vertical translational value of the nth mode shape vector at excitation point.

– F h=α h Q is the amplitude of the excitation force for the hth harmonic. 

– α h is the Fourier coefficient for the  hth harmonic, see Subchapter 1.4 about this.

– Q is the static force exerted by an average person (normally taken as 0.746 kN).

– M n is the modal mass of modeshape n and it is equal to 1[t] if the mode shape vector is
normalized to the mass matrix. In FEM-Design the mode shapes are always normalized to
the mass matrix.

– Dn ,h=

h2( f p

f n
)

2

√(1−h2( f p

f n
)

2

)
2

+4ζ 2 h2( f p

f n
)

2
is the magnification factor for the accelerations.

– h is the number of the  hth harmonic under consideration.

– f p is the excitation frequency.

– f n is the eigenfrequency of the nth mode shape.

– ζ is the critical damping ratio.

– W h is  the  weighting  factor  calculated  with  the  frequency  of  the  harmonic  under
consideration hf p , see Subchapter 1.3 also.

– ρ=1−e
(−2π ζ L p f p

v )
is the resonance build-up factor. 

If the walking path is sufficiently short a steady-state condition may not be reached thus
this reduction factor will be used. If the damping is exactly set to 0 then ρ = 1.0 and the
program neglects this effect.

– v=1.67 f p
2
−4.83 f p+4.50 is the velocity of walking. 

If the adjusted f p value is less than 1.7 Hz then this velocity is calculated with f p  = 1.7
Hz. And if the adjusted  f  p value is greater than 2.4 Hz then this velocity is calculated
with f p = 2.4 Hz.

– L p=0.75 m⋅N footsteps is the length of the walking path.

– N footsteps is the number of footsteps.
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1.2.1.2 Transient accelerations

The weighted vertical acceleration function of the transient part of the vibration in a node where
the excitation force is considered:

aw ,e [ transient ]( t)=∑
n=1

N

2π f n √1−ζ 2 μ e , n
2 F I n

M n

sin (2π f n √1−ζ 2 t )e−ζ 2π f n t W n , (Eq. 4)

where, in addition to those described above:

– F I n=60
f p

1.43

f n
1.3

Q
700

is the excitation impulse force of the nth mode shape.

– W n is the weighting factor calculated with the eigenfrequency of  nth mode shape. See
Subchapter 1.3 also.

Based on the transient acceleration function the RMS acceleration will be calculated with the
following formula:

aw , RMS , e[ transient ]=√ f p ∫
0

1 / f p

aw , e [transient ](t )
2 dt (Eq. 5)

1.2.1.3 Final acceleration of one node

The overall vertical RMS acceleration result of one node will be the greater value from the
steady-state and transient response: 

aw , RMS , e=max [aw , RMS ,e [ transient ];aw , RMS ,e [steady state ]] (Eq. 6)

The response factor value of one node is calculated based on Eq. 2 with this acceleration value.
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1.2.2 Full excitation

In this case the excitation force is one concentrated vertical force. Full excitation analyses the
response in any node, to effect of the force applied to another node. In this case the excitation
force is applied independently in the selected node or nodes and there is no interaction between
them.  The  user  can  adjust  one  or  more  excitation  points  and  FEM-Design  calculates  the
responses in all nodes individually (e≠r). For example thus it means that if the excitation force is
applied  at  node  number  2  then  the  response  will  be  calculated  in  all  nodes  based  on  this
excitation  force  at  node number  2  (see  Fig.  4).  This  method is  usually  proper  for  walking
activities and response analysis according to Reference [2]. 

Here the user should  select excitation point(s) where the excitation force(s) will  be applied
individually. The response will be calculated in all nodes of the structure. The results will be
available for the different excitation point(s) individually. 

The user should adjust the number of footsteps, the mass of the walker (it is usually around 76
kg) and the  frequency weighting curve (see Subchapter 1.3) and the  Fourier coefficients (see
Subchapter 1.4).

1.2.2.1 Steady-state accelerations

The steady-state weighted vertical RMS acceleration in a node where the response is calculated
comes from the following equation:

aw , RMS , e , r [steady state ]=ρ
1
√2 √∑h=1

H

(∑n=1

N

(μ e ,n μ r , n

F h

M n

Dn , hW h))
2

, (Eq. 7)

where, in addition to those described above:

– μ r ,n is the vertical translational value of the  nth mode shape vector at the point where
the response is to be calculated.

12

Figure 4 – The full excitation method: the excitation point is at node number 2 and the
response is calculated in all nodes based on this excitation force position
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1.2.2.2 Transient accelerations

The weighted vertical acceleration function of the transient part of the vibration in a node where
the response is to be calculated comes from the following equation:

aw ,e , r [transient ](t)=∑
n=1

N

2π f n√1−ζ 2 μe ,n μ r ,n

F I n

M n

sin(2π f n √1−ζ 2 t )e−ζ 2π f n t W n , (Eq. 8)

Based on the transient acceleration function the RMS acceleration will be calculated with the
following formula:

aw , RMS , e , r [transient ]=√ f p ∫
0

1/ f p

aw ,e , r [transient ](t)
2 dt (Eq. 9)

1.2.2.3 Final acceleration of one response node

The overall vertical RMS acceleration result of one response node will be the greater value from
the steady-state and transient response: 

aw , RMS , e , r=max [aw , RMS , e ,r [ transient ];aw , RMS ,e , r [ steady state ] ]          (Eq. 10)

The  response  factor  value  of  one  reponse  node  is  calculated  based  on  Eq.  2  with  this
acceleration value.

13
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1.2.3 Rhythmic crowd load

In this case the excitation force can be distributed surface vertical force (or in some situation
concentrated or  line distributed force).  This  type of excitation is  the so-called synchronised
crowd  activities.  This  type  of  excitation  force  is  usually  proper  for  small  groups  induced
vibrations (e.g. dance and aerobic areas) according to Ref. [2][3]. The user should make load
case(s) (typically with vertical distributed surface load) which will represent the static load(s) of
the crowd group(s). During the footfall analysis only the vertical components of the force-a-like
values in  the selected load case(s)  will  be considered.  The results  will  be available  for the
different load case(s) individually and will show the accelerations in all nodes of the structure as
response nodes. For example see Fig. 5 where the load vector of the distributed surface load will
represent the static load of the crowd group and the program calculates the response in all nodes
based on the consideration of the dynamic effect of this crowd load.

Here the user should select load case(s) which will include the static load of the crowd group.
The user should adjust the Fourier coefficients also (see Subchapter 1.4).

In this excitation method only the steady-state part of the solution will be evaluated with the
following general vector equation which will represent the RMS acceleration response vector of
the structure. In Eq. 11 the squaring by the summation and the square root should be interpreted
individually by the elements of the vector):

a RMS=
1

√2 √∑h=1

H

(∑
n=1

N

(μ n⋅μ n
T
⋅f h⋅Dn , h))

2

, (Eq. 11)

where, in addition to those described above:

– μ n is the eigenvector of the nth mode shape (normalized to the mass matrix).

– f h=α h q is the amplitude of the excitation force vector for the hth harmonic. 
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Figure 5 – The rhythmic crowd load method: the excitation force is the distributed
surface load and the response is calculated in all nodes
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– q is the load vector based on the selected load case as excitation load.

The response factor values are calculated based on Eq. 2 with this RMS acceleration vector.

Another  useful  result  by  this  excitation  method  is  the  dynamic  magnification  factor  for
displacements which will be calculated by the nth mode shape as follows:

Dn=√∑h=1

H

(
α h

√(1−h2( f p

f n
)

2

)
2

+4ζ 2 h2( f p

f n
)

2)
2

(Eq. 12)

By the results the user can see the maximum values of these magnification factors regarding the
most unfavourable excitation frequencies.

With this value the users can give the  equivalent static load. The static deflections under this
equivalent static load will be equal to the maximum displacements of the dynamic behaviour of
the structure under the rhythmic crowd load. 

qequivalent=(1+Dn)q (Eq. 13)
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1.3 Weighting factors

In FEM-Design there are two different options to set the required weighting factors for the self
and full excitation method.

It is for the consideration of the different response of the human body in different room types
and situations, see Ref. [1].

Z-axis (vertical) vibration Wg weighting curve (BS 6841):

W =0.5√ f for 1 Hz< f <4 Hz

W =1.0 for 4 Hz≤ f ≤8 Hz

W =8.0 / f for f >8 Hz

Z-axis (vertical) vibration Wb weighting curve (BS 6841):

W =0.4  for 1Hz< f <2Hz

W = f /5.0 for 2Hz≤ f <5Hz

W =1.0 for 5Hz≤ f ≤16Hz

W =16.0 / f for f >16 Hz

16
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1.4 The types of the adjustable Fourier coefficients

In FEM-Design there are five different options to set the required Fourier coefficients for the
steady-state calculations. The αh Fourier coefficients are as follows:

1.4.1 User defined coefficients

The user can apply maximum six arbitrary Fourier harmonic coefficients by hand.

1.4.2 SCI P354 Table 3.1 based on Reference [2]

Harmonic 
h

Excitation frequency range
hfp

 (Hz)
Design value of coefficient

αh

1 1.8 to 2.2 0.436(hfp    ̶  0.95)

2 3.6 to 4.4 0.006(hfp + 12.3)

3 5.4 to 6.6 0.007(hfp + 5.2)

4 7.2 to 8.8 0.007(hfp + 2.0)

1.4.3 SCI P354 Equation 20 based on Reference [2]

Harmonic 
h

Design value of coefficient
αh

1 1.61p  ̶  0.082

2 0.94p  ̶  0.24

3 0.44p  ̶  0.31

Where p is the number of participants in the rhythmic activity (2 ≤ p ≤ 64).

1.4.4 Concrete Center Table 4.3 based on Reference [4]

Harmonic 
h

Excitation frequency range
hfp

 (Hz)
Design value of coefficient

αh

1 1.0 to 2.8 min(0.41(hfp    ̶  0.95) ; 0.56)

2 2.0 to 5.6 0.069 + 0.0056hfp

3 3.0 to 8.4 0.033 + 0.0064hfp

4 4.0 to 11.2 0.013 + 0.0065hfp

17
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1.4.5 Danish Annex C based on Reference [3]

The coefficients contain the size reduction factor!

Possible to move about freely

Harmonic 
h

Design value of coefficient
αh

1 1.6

2 1.0√0.3+(1−0.3)
1
ne

3 0.2√0.03+(1−0.03)
1
ne

Where ne is the effective number of people.

Reduced possibility to move about

Harmonic 
h

Design value of coefficient
αh

1 0.40

2 0.25√0.1+(1−0.1)
1
ne

3 0.05√0.01+(1−0.01)
1
ne

Where ne is the effective number of people.

Walking

Harmonic 
h

Design value of coefficient
αh

1 0.40√ 1
ne

2 0.10√ 1
ne

3 0.06√ 1
ne

Where ne is the effective number of people.

18
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2 Verification examples

2.1 Footfall analysis of a concrete footbridge

Example taken from Ref. [4]. Let's take the following footbridge statical system from Fig. 6.

Inputs for the self excitation footfall analysis:

Dynamic elastic modulus of concrete E = 38 GPa

The distributed load (load-mass conversion) p = 18.13 kN/m

Number of considered mode shapes N = 3

Inertia of the cross-section I = 0.056 m4

Area of the section A = 0.77 m2

Number of footsteps (conservative estimation) Nfootstep = 100 pcs

Mass of the walker m = 71.36 kg

Frequency weighting curve Wg

The excitation frequency interval fp,min= 1 Hz, fp,max= 2.8 Hz 

Frequency steps steps = 100 pcs

The cut-off eigenfrequency fcut = 15 Hz

Damping ζ = 1.5 %

Fourier coefficients (see Subchapter 1.4) The Concrete Centre Table 4.3

The model is divided into 16 finite bar elements. The given distributed load is converted to mass
with 1.0 factor (1848 kg/m) for the eigenfrequency calculation. The statical system is a beam
with  the  given  stiffness  parameters  and  with  3  supports  (see  Fig.  6).  All  of  the  necessary
parameters for the footfall analysis is given in the inputs. In FEM-Design the used excitation
method  was  the  self  excitation  method.  For  the  self  excitation  method  the  adjusted  region
contained the full beam structure.

The first three mode shapes are visible in Fig. 7 based on the FEM-Design calculation. Table 1
contains the theoretical solutions about the eigenfrequencies of the first three modes according
to Ref. [4] and FEM-Design results are also indicated. There are good agreements between the
two results.

19

Figure 6 – The concrete footbridge with the considered load-mass conversion

L = 20 m L = 20 m
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Mode Theoretical (Hz) FEM-Design (Hz)

1st 4.22 4.203

2nd 6.59 6.536

3rd 16.90 16.68
Table 1 – The first three eigenfrequencies

This footbridge is relatively soft, therefore the steady-state acceleration will be greater than the
transient.  As a  simple hand calculation check according to  Eq. 3  the RMS acceleration for
walking at 2.102 Hz is the following:

The amplitude of the excitation force by the second harmonic (see Subchapter 1.4):

F 2=
71.36
1000

⋅9.81(0.069+0.0056⋅2⋅2.102)=0.06478kN

In this case the second harmonic of the excitation frequency causes resonance.

The dynamic magnification factor for the accelerations by the 1st mode shape and 2nd harmonic:

D1,2=

22( f p

f 1
)

2

√(1−22( f p

f 1
)

2

)
2

+4ζ 2 22( f p

f 1
)

2
=

22(2.102
4.203)

2

√(1−22(2.102
4.203)

2

)
2

+4⋅0.0152
⋅22(2.102

4.203)
2
=

=
1

√0+4⋅0.0152
⋅1

=
1

2⋅0.015
=33.33

20

Figure 7 – The first three mode shapes [-]
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Based on these values the RMS acceleration at mid-span (see Fig. 7 also):

aw ,midspan , RMS [ steady state ]=
1
√2

μmidspan ,1
2 F 2

M 1

D 1,2W 2=
1
√2

0.16452 0.06478
1

33.33⋅1.0=0.04131
m
s2

In Ref. [4] the peak acceleration value is apeak = 0.06 m/s2, therefore the comparable RMS value
is: 

a RMS=
a peak

√2
=

0.06
√2

=0.04243
m
s2 and the response factor based on Ref. [4]: R=8.5

Based on the FEM-Design calculation these two values are (see Fig. 8 as well):

a RMS , FEM=0.0443
m

s2
and R=8.86 .

There are good agreements between the results. The difference comes from the fact that not only
the first mode shape has effect on the accelerations however in Ref. [4] and the hand calculation
here considered only the first mode.

Another interesting result could be the frequency curve. Fig. 9 shows the accelerations at the
midspan point in function of the excitation frequencies. The red line is the steady-state response
and the green one is the transient. Based on Fig. 9 we can say that in this example the transient
response is really negligible compared to the steady-state response. The frequency curve clearly
shows the resonance excitation frequencies where the peak RMS accelerations arise.

Download link to the example file:
http://download.strusoft.com/FEM-Design/inst180x/models/8.1 Footfall analysis of a concrete 
footbridge.str

21

Figure 8 – The acceleration [m/s2] and the response factor [-] in FEM-Design

http://download.strusoft.com/FEM-Design/inst180x/models/8.1%20Footfall%20analysis%20of%20a%20concrete%20footbridge.str
http://download.strusoft.com/FEM-Design/inst180x/models/8.1%20Footfall%20analysis%20of%20a%20concrete%20footbridge.str
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Figure 9 – Accelerations in function of excitation frequencies in FEM-Design
Red: steady-state response
Green: transient response
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2.2 Footfall analysis of a composite floor

Example taken from Ref. [2]. Let's take a 130 mm deep normal weight concrete slab on top of
1.2 mm thick re-entrant deck. Slabs supported by 6.0 m span secondary beams at 2.48 m cross-
centres which, in turn, are supported by 7.45 m span castellated primary beams in orthogonal
direction, see Fig. 10. The input data and the geometry are available in Ref. [2].

Inputs for the self excitation footfall analysis:

Excitation region (see Fig. 10) The whole floor slab

The distributed load (load-mass conversion) p = 4.48 kN/m2

Number of footsteps (conservative estimation) Nfootstep = 100 pcs

Mass of the walker m = 76 kg

Frequency weighting curve Wg

The excitation frequency interval fp,min= 1.8 Hz, fp,max= 2.2 Hz 

Frequency steps steps = 100 pcs

The cut-off eigenfrequency fcut = 15 Hz

Damping ζ = 4.68 %

Fourier coefficients (see Subchapter 1.4) SCI P354 Table 3.1

In Ref. [2] with the finite element calculation the first fundamental natural frequency was:

f 1=10.80Hz

In Ref. [2] with the finite element calculation the response factor was:

R=3.18

With  the  given parameters  above and considering  the  geometry and the  material  properties
based on Ref. [2] FEM-Design calculation gives the following results (see Fig. 10 also):

f FEM =10.82Hz and R=3.82

We can say that there are good agreements between the results. However, it should be noted that
in Ref. [2] the results of the calculation is given, but the details of the finite element model and
calculation method is unclear, therefore there may be differences in the modeling methods. By
this  example  it  is  very hard  to  say that  the result  in  Ref.  [2]  is  relevant  because the hand
calculation is quite different than the FEM calculation what was published in Ref. [2]. Based on
our opinion the indicated FEM result in Ref. [2] belongs to the transient response as well as the
result in FEM-Design.
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Download link to the example file:
http://download.strusoft.com/FEM-Design/inst180x/models/8.2 Footfall analysis of a composite
floor.str

24

Figure 10 – The model, the first mode shape [-] and the response factor [-] results in FEM-Design

http://download.strusoft.com/FEM-Design/inst180x/models/8.2%20Footfall%20analysis%20of%20a%20composite%20floor.str
http://download.strusoft.com/FEM-Design/inst180x/models/8.2%20Footfall%20analysis%20of%20a%20composite%20floor.str
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2.3 Footfall analysis of a lightweight floor

Example taken from Ref. [2]. Let's take a chipboard flooring on lightweight steel beams, see
Fig. 11. The input data and the geometry are available in Ref. [2].

Inputs for the full excitation footfall analysis:

Excitation point (see Fig. 11) In the middle of the floor

The distributed load (load-mass conversion) p = 0.69 kN/m2

Number of footsteps (conservative estimation) Nfootstep = 100 pcs

Mass of the walker m = 76 kg

Frequency weighting curve Wg

The excitation frequency interval fp,min= 1.8 Hz, fp,max= 2.2 Hz 

Frequency steps steps = 100 pcs

The cut-off eigenfrequency fcut = 15 Hz

Damping ζ = 5.0 %

Fourier coefficients (see Subchapter 1.4) SCI P354 Table 3.1

In Ref. [2] with the finite element calculation the first fundamental natural frequency was:

f 1=16.31Hz

In Ref. [2] with the finite element calculation the response factor was:

R=53.9

In FEM-Design the average finite element size was 0.40 m. With the given parameters above
and  considering  the  geometry  and  the  material  properties  based  on  Ref.  [2]  FEM-Design
calculation gives the following results (see Fig. 11 also):

f FEM =16.13Hz and R=53.87

Fig. 12 shows the response factors in function of the given interval of the excitation force based
on FEM-Design calculation.

We can say that there are good agreements between the results. However, it should be noted that
in Ref. [2] the results of the calculation is given, but the details of the finite element model and
calculation method is unclear, therefore there may be differences in the modeling methods.

Download link to the example file:
http://download.strusoft.com/FEM-Design/inst180x/models/8.3 Footfall analysis of a 
lightweight floor.str
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Figure 11 – The model, the first mode shape [-] and the response factor [-] results in FEM-Design

Figure 12 – Response factor in function of excitation frequencies in FEM-Design
Red: steady-state response
Green: transient response
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2.4 Footfall analysis of a small stage with rhythmic crowd load

This calculation will be presented according to Danish Annex (Ref. [3]). The floor is a simply
supported concrete slab. The half of the slab is a stage where the rhythmic crowd activity will be
considered (see Fig. 13).

Inputs for the rhythmic crowd load footfall analysis:

Elastic modulus of concrete E = 31 GPa, ν = 0.2 

Thickness of the concrete slab t = 250 mm

Self-weight plus the considered imposed load p = 6.75 kN/m2

Mean static crowd load (on half of the slab, Fig. 13) Fp
 = 1.0 kN/m2

The excitation frequency fp = 3 Hz

The cut-off eigenfrequency fcut = 30 Hz

Damping ζ = 1.9 %

Effective number of people ne = 20

Fourier coefficients (see Subchapter 1.4) According to Danish Annex
Reduced possibility to move about

The first eigenfrequency (based on finite element calculation):

f 1=12Hz

In the Danish Annex the logarithmic decrement is given instead of critical damping ratio. The
logarithmic decrement with the given critical damping ratio from the inputs:

(δ s+δ p)=2π ζ =2π 0.019=0.12
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Figure 13 – The slab with the stage
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The frequency response factor in the Danish Annex is given with:

H j=
1

√(1−( j⋅ f p

f 1 )
2

)
2

+((δ s+δ p) j⋅ f p

π f 1 )
2

, therefore:

H 1=
1

√(1−(1⋅3
12 )

2

)
2

+(0.12⋅1⋅3
π 12 )

2
=1.067 ;

H 2=
1

√(1−(2⋅3
12 )

2

)
2

+(0.12⋅2⋅3
π 12 )

2
=1.333 ;

H 3=
1

√(1−(3⋅3
12 )

2

)
2

+(0.12⋅3⋅3
π 12 )

2
=2.281 .

The considered Fourier coefficients including the size reduction factor (see Subchapter 1.4):

α 1 K1=0.40 ;

α 2 K 2=0.25√0.1+(1−0.1)
1
20

=0.0952 ;

α 3 K3=0.05√0.01+(1−0.01)
1

20
=0.0122 .

The dynamic magnification factor for displacements (according to Danish Annex):

k F=√∑
j=1

3

(α j K j H j )
2
=√(0.4⋅1.067)

2
+(0.0952⋅1.333)

2
+(0.0122⋅2.281)2

k F=0.4461

The acceleration response factor (according to Danish Annex):

k a=√ 1
2∑j=1

3

( j2α j K j H j)
2
=

1

√2
√(12⋅0.4⋅1.067)2+(22⋅0.0952⋅1.333)2+(32⋅0.0122⋅2.281)2

k a=0.5013
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The maximum deflection of the slab under the mean static crowd load on the half of the slab
(based on a finite element calculation, see Fig. 14):

u p=0.2132mm

The RMS acceleration  of  the  structure  induced by the  vertical  dynamic  load  (according to
Danish Annex):

aa=k a(2π f p)
2 u p=0.5013⋅(2π 3)

2 0.2132/1000=0.03797
m

s2

The accelerations and the dynamic magnification factors for displacements based on the FEM-
Design calculation (see Fig. 15):

a FEM=0.03832
m

s2

k FEM=0.446

The difference between the hand calculation and FEM-Design calculation is less than 1%.

Download link to the example file:
http://download.strusoft.com/FEM-Design/inst180x/models/8.4 Footfall analysis of a small 
stage with rhythmic crowd load.str
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Figure 14 – The slab with the crowd load and the displacements in [mm] under it in FEM-Design

http://download.strusoft.com/FEM-Design/inst180x/models/8.4%20Footfall%20analysis%20of%20a%20small%20stage%20with%20rhythmic%20crowd%20load.str
http://download.strusoft.com/FEM-Design/inst180x/models/8.4%20Footfall%20analysis%20of%20a%20small%20stage%20with%20rhythmic%20crowd%20load.str
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Figure 15 – The accelerations in [m/s2] and the response factors [-] in FEM-Design



Footfall Analysis FEM-Design 18 

References
[1] Chopra A.K., Dynamics of Structures, Prentice Hall,1981.

[2] Smith A. L., Hicks S. J., Devine P. J., Design of Floors for Vibration: A New Approach, The 
Steel Construction Institute, Ascot, 2009.

[3] DS/EN 1991-1-1 DK NA:2013 Annex C: Rhythmical and syncronised movement of people.

[4] Willford M.R., Young P., A Design Guide for Footfall Induced Vibration of Structures, 
Concrete Society, 2006.

31



Footfall Analysis FEM-Design 18 

Notes

32


	List of symbols
	1 Footfall analysis
	1.1 Theoretical background
	1.2 Different excitation methods
	1.2.1 Self excitation
	1.2.1.1 Steady-state accelerations
	1.2.1.2 Transient accelerations
	1.2.1.3 Final acceleration of one node

	1.2.2 Full excitation
	1.2.2.1 Steady-state accelerations
	1.2.2.2 Transient accelerations
	1.2.2.3 Final acceleration of one response node

	1.2.3 Rhythmic crowd load

	1.3 Weighting factors
	1.4 The types of the adjustable Fourier coefficients
	1.4.1 User defined coefficients
	1.4.2 SCI P354 Table 3.1 based on Reference [2]
	1.4.3 SCI P354 Equation 20 based on Reference [2]
	1.4.4 Concrete Center Table 4.3 based on Reference [4]
	1.4.5 Danish Annex C based on Reference [3]


	2 Verification examples
	2.1 Footfall analysis of a concrete footbridge
	2.2 Footfall analysis of a composite floor
	2.3 Footfall analysis of a lightweight floor
	2.4 Footfall analysis of a small stage with rhythmic crowd load

	References
	Notes

