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List of symbols

Scalars

Kc column stiffness coefficient

K1 and K2 stiffness coefficient for the adjacent lengths of the column

Kij effective beam stiffness coefficient

KT translational stiffness at the far end of the beam, perpendicular to the beam, in 
one of the principal plain of the cross-section of the beam

KR rotational stiffness perpendicular to one of the principal plain of the cross-section 
of the beam

EIB bending stiffness of the beam in one of the principle axis

EI bending stiffness of the column being design in one of the principle axis

L length of the column being design

LB length of the beam

β Lcr / L buckling length factor

η1 and η2 distribution factors at the ends of the column being design

φ rotation at the end of the beam

Abbreviations

[x' – y' – z']B local system of the beams

[x' – 1 – 2]B principal system of the beams

[x' – y' – z']C local system of the column being design

[x' – 1 – 2]C principal system of the column being design
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1 Background information

1.1 Basics

The basic reference for the automatic flexural buckling length calculation is: 

ECCS - Rules for Member Stability in EN 1993-1-1: Background documentation and design
guidelines. 

This documentation presents a general buckling length calculation for regular planar non-sway
and sway frames with vertical and horizontal bars. The method is applicable for RC members
also and the results of the method is very similar with the buckling length calculation what is
indicated in EN 1992-1-1, Chapter 5.8.3.2. 

Basically the original (ECCS) method is an approximation therefore there are some limitations
to use because a completely general calculation method does not exist. The exact calculation
method is the stability eigenvalue calculation based on the specific loads and support conditions
of the structure. The method which has been implemented in the program is an approximation
with engineering approaches.

The algorithm in the program uses the original method with some reasonable modification to
reach a more general solution, according to the further information.

In the following chapters  the so-called “column being design” phrase refers  to the selected
buckling length. The geometric length of a buckling length is the distance between the start
point and the end point.
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1.2 Theoretical background

The proposal of ECCS - with some reasonable modifications to give a more general method -
are as follows.

There are two different theoretical planar models, namely for non-sway and sway frames (see
Fig. 1). In the original method the column being design is vertical and all of the connecting
beams are horizontal and are in one of the principal plain of the column being design. 

In the modified algorithm which has been implemented there are no such limitations.

The following method must be applied in both principle buckling plains of the column being
design.

1.2.1 Distribution factors

The distribution factors at the end of the considered column being design (these factors consider
the sum of the rotational stiffnesses at the end of the column being design): 

η1=
K c

K c+K 11+K 12

→ η1=
K c

K c+∑
j=1

n

K1j

,

η2=
K c

K c+K 21+K 22

→ η2=
K c

K c+∑
j=1

n

K 2j

,

where the  K values are the rotational stiffness coefficients. The 0.0 value of this distribution
factor means that the end of the column being design is fixed against rotation and the 1.0 value
means that the end is hinged.

The Kc column stiffness coefficient by the column being design is:

K c=4
EI
L

6

Figure 1 – The theoretical model for non-sway and sway mode
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The effective stiffness coefficients of the connecting beams at the ends of the column being 
design in the considered principle buckling plain of the column are Kij. 

The i index could be 1 or 2. The 1 means the start point of the column and 2 is the end point of
the column respectively (the start and end points depends on the local system of the column).
The j index shows the number of the connecting beams at the start or end point. 

The  calculation  method  of  the  effective  stiffness  coefficients  is  presented  in  the  following
chapters  because  these  values  have  significant  effect  on  the  final  automatically  calculated
buckling length.

If the column being design has a parallel sequel at one end then the distribution factors should
be calculated with the following modification:

η1=
K c+K 1

K c+K1+K 11+K12

→ η1=
K c+K 1

K c+K1+∑
j=1

n

K1j

,

η2=
K c+K 2

K c+K 2+K 21+K22

→ η2=
K c+K2

K c+K 2+∑
j=1

n

K 2j

,

where K1 and K2 is the effective stiffness coefficient of the continuous (sequel part) column at the
start point and at the end point. If there are no other connecting elements at the end of the sequel
column part this modification is irrelevant.

All of the presented  K values should be interpret in the considered principle plain (buckling
length direction) of the column being design.
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1.2.2 Effective stiffness coefficients

The effective stiffness coefficients of the connecting beams Kij depends on several things:

– The far end support condition of the beam (e.g.: fixed, hinged, elastic support, etc.).

– The connecting elements to the beams at far ends (e.g.: vertical columns, etc.).

– The previous property depends on whether the column is non-sway or sway.

– The end release condition of the connecting beam at both ends (e.g.: hinges).

In this chapter the first three things will be discussed and the next subchapter will contain the
remaining one. 

In general case if the connecting beam has a translational (KT ) and rotational  (KR) point support
(spring) at the far end (see Fig. 2) the effective rotational stiffness parameter in the principal
plain of the straight beam is the following:

K ij=4
EI B[ KT LB

2 ( K R LB+3 EI B)+3 K R EI B]
KT LB

3 (K R LB+4 EI B)+12EI B (K R LB+EI B)
(Eq. 1)

The KT value is the translational stiffness at the far end of the beam perpendicular to the axis of
the beam in one of the principal plains ([x' – 1 – 2]B, see Fig. 2).

The KR value is the rotational stiffness at far end of the beam in one of the principal plain  (see
also Fig. 2).

8

Figure 2 – The effective rotational parameter case with general support condition at far end 
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Eq. 1 leads to the well-known coefficients in the extreme cases.

For  example let's  see the following far  end support  conditions  of  the connecting beam and
calculate the effective stiffness coefficient with Eq. 1:

          KT → ∞ and KR → ∞ (fixed end) K ij=4
EI B

LB

          KT → ∞ and KR → 0 (hinged end) K ij=3
EI B

LB

          KT → 0 and KR → 0 (free end) K ij=0

          KT → 0 and KR → ∞ K ij=
EI B

LB

In a non-sway frame if the connecting beam has a connection with an adjacent column (or any
other structural part which is not parallel with the local  x' axis of the beam and which is not
perpendicular to the x' axis of the column being design and which is not a point support) then
the rotational stiffness parameter comes from the case when the rotation equal and opposite to
that at the near end (single curvature, see Fig. 3). The stiffness parameter (in both principal
plains) in this case:

K ij=2
EI B

LB

This is a reasonable approximation to get a correct result in most of the cases (see the first storey
columns and the connecting beams at its top end in Fig. 3)

9

Figure 3 – The effective stiffness coefficient with rotational equal and opposite
to that at near end and an obvious example for it by a non-sway frame
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In a sway frame if the connecting beam has a connection with an adjacent column (or any other
structural  part  which  is  not  parallel  with  the  local  x' axis  of  the  beam and  which  is  not
perpendicular to the x' axis of the column being design and which is not a point support) then
the rotational stiffness parameter comes from the case when the rotation equal to that at the near
end (double curvature, see Fig. 4). The stiffness parameter (in both principal plains) in this case:

K ij=6
EI B

LB

This is a reasonable approximation to get a correct result in most cases (see the first storey
columns and the connecting beams at its top end in Fig. 4)

10

Figure 4 – The effective stiffness coefficient with rotational equal to that at
near end and an obvious example for it by a sway frame
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1.2.3 Transformation of the point support and effective stiffness coefficients

The connecting beam rotational stiffness parameters if there is a point support at the far end of
the beam are as follows:

The point support stiffnesses (3 translational and 3 rotational) should transform from its local
system to beam  x' – 1 – 2 system.

Translational: 

[
K x ' 0 0
0 K y ' 0
0 0 K z '

]
ps

→ T [
K x ' 0 0
0 K y ' 0
0 0 K z '

]
ps

T T
=[

K x'

KT1

KT2
]
[x ' –1– 2]B

Rotational:

[
C x ' 0 0
0 C y ' 0
0 0 C z '

]
ps

→ T [
C x' 0 0
0 C y ' 0
0 0 C z '

]
ps

T T
=[

C x '

K R1

K R2
]
[x ' –1– 2]B

The T transformation matrix here:

T·u(x' – y' – z')ps =  u(x' – 1' – 2')B

With these stiffnesses (KT1, KR2 and KT2, KR1 in the principal plains) the Kij1 and Kij2 values should
be calculated according to the former general equation (Eq. 1) in the principal directions. 

After this step these two rigidity values should transform into the x' – y' – z' local system of the
connecting beam.

[K ij 1

K ij 2]B

→  [K ij y'

K ij z ' ]B

=[K ij1 cos2θ +K ij 2 sin2θ

K ij1 sin2θ+K ij 2cos2θ ] ,

where θ is the angle between 1 and y' axis of the beam (x' – 1 – 2  → x' – y' – z').

If  the settings of the end release at  the near end is  hinged in  y'  or  z'  direction then in that
direction the stiffness parameter is set to zero.

As a conservative approximation when the far end is hinged about y' or z' direction then
that stiffness parameter is multiplied by 0.75.

By  this  calculation  only  the  hinged  option  is  considered  the  other  non-zero  end  release
conditions are neglected (see Fig. 2).
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The connecting beam rotational stiffness parameters if there are non-parallel connecting beams,
non-parallel columns or shells at the far end of the beam are as follows:

Non-sway case (see the end of the 1.2.2 subchapter):

[K ij 1

K ij 2
]B

=[2
EI 1 B

LB

2
EI 2 B

LB
] →  [K ij y'

K ij z ' ]B

=[K ij1 cos2θ +K ij 2 sin2θ

K ij1 sin2θ+K ij 2cos2θ ] ,

where θ is the angle between 1 and y' axis of the beam (x' – 1 – 2  → x' – y' – z' ).

If  the settings of the end release at  the near end is  hinged in  y'  or z'  direction then in that
direction the stiffness parameter is set to zero.

As a conservative approximation when the far end is hinged about y' or z' direction then
that stiffness parameter is multiplied by 1.5.

Sway case (see the end of the 1.2.2 subchapter):

[K ij y'

K ij z '
]B

=[6
EI 1B

LB

6
EI 2B

LB
] →  [K ij y'

K ij z ' ]B

=[K ij1 cos2θ +K ij 2 sin2θ

K ij1 sin2θ+K ij 2cos2θ ] ,

where θ is the angle between 1 and y' axis of the beam (x' – 1 – 2  → x' – y' – z' ).

If  the settings of the end release at  the near end is  hinged in  y'  or  z'  direction then in that
direction the stiffness parameter is set to zero.

As a conservative approximation when the far end is hinged about y' or z' direction then
that stiffness parameter is multiplied by 0.5.

By these  calculations  only  the  hinged  option  is  considered  the  other  non-zero  end  release
conditions are neglected (see Fig. 2).

12

Figure 2 – Hinge consideration
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Calculation of the final effective stiffness coefficients:

After  these effective stiffness  coefficients are  available  they should be transformed into the
buckling plains (principal plains) of the column being design.

The buckling lengths are relevant in the principal directions of the section. It means that during
the distribution factor calculation the end rotational stiffnesses should be transformed into the
principal direction of the section (into the principle system of the column being design).

The  torsional  stiffness  of  the  connecting  beams  are  neglected  as  a  conservative
approximation.

[K ij 1

K ij 2]C

=[K y ' beam
T 22

2
+K z ' beam

T 23
2

K y ' beam
T 32

2
+K z ' beam

T 33
2 ] ,

where the T transformation matrix here:

T·u(x' – y' – z')B =  u(x' – 1 – 2)C

After the summation of the effective rotational stiffnesses at both ends (in  x' – 1 – 2 column,
including the possible point support against rotation at the ends of the column being design), the
hinged option of the column being design is considered with reset the relevant values with zero. 

By  this  calculation  only  the  hinged  option  is  considered  the  other  non-zero  end  release
conditions are neglected (see Fig. 2).
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1.2.4 Calculation of the buckling lengths

After  the  calculation  of  these  effective  rotational  stiffnesses  in  the  principal  system of  the
column being design the buckling length can be determined with the following equations.

The ratio between flexural buckling length and the geometric length of the column being design
is (the so-called beta factor): 

β=
Lcr

L

The ECCS value of this ratio with the help of the distribution factors in the two different cases:

Non-sway frame:

β=
1+0.145(η1+η2)−0.265η1η2

2−0.364(η1+η 2)−0.247η1η 2

In this case the factor is between 0.5 and 1.0 obviously.

Sway frame:

β=√ 1−0.2(η1+η 2)−0.12η1η 2

1−0.8(η1+η2)+0.6η1η 2

In this case the factor is between 1.0 and +∞. A reasonable upper limit is set to 10.0 in FEM-
Design.

14
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The nomogram  representation of these two cases are shown in Fig. 3 and 4.

15

Figure 3 – The nomogram for non-sway frames

Figure 4 – The nomogram for sway frames
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1.2.5 Restrictions and other comments

Consideration of slabs:

As a  rough approximation  in  case of  non-sway and sway case if  only a  plate  or  a  wall is
available (without  any other  structural  elements) at  the end of the column being design the
distribution factor will be 0.0 assumed as a completely fixed end of the column. This is a rough
estimation.

Consideration of trusses.

The  calculation  of  the  effective  stiffness  coefficient  is  relevant  for  connecting  beams  and
columns as well, but the effective stiffness of a truss element is zero according to the hinged-
hinged ends.

Consideration of variable cross-sections.

If the cross-section of the column being design or the connecting beam is variable along its axis
then the program compare that at the start point or at the end point cross-section has a smaller
polar moment of inertia. The considered second moment of inertia (which is necessary by the
bending  stiffness  calculation)  will  come from that  cross-section  where  the  mentioned polar
moment of inertia is smaller (at the start or at the end point of the bar).

Consideration of composite bars.

By the composite  bars the considered bending stiffness will  be the bending stiffness  which
belongs to the homogenized cross-section based on the stability elastic modulus of the concrete.

Consideration of bilinear point supports.

By the bilinear point supports always the greater initial stiffness will be considered.

16



Flexural buckling length FEM-Design 18 

2 Verification examples

2.1 Concrete frame building

In this example we will calculate the buckling lengths of the indicated isolated columns (C.1;
C.4, see Fig. 5) according to EN 1992-1-1:2004 Chapter 5.8.3.2. After the hand calculation we
will compare the results with the FEM-Design automatic buckling length calculation results.

The geometry is shown in Fig. 5. The material is C25/30 the columns have 300/300 mm, the
beams have 300/500 mm cross-sections. We will calculate the buckling lengths of the middle
isolated columns at the ground floor and at the first floor. The supports are fixed at the bottom of
the ground floor columns.

2.1.1 Non-sway case

If the frame is a non-sway frame the method according to EN 1992-1-1:2004 Chapter 5.8.3.2. is
the following:

The bending stiffness of the columns:

EI c=31000000⋅
0.34

12
=20925kNm2

The bending stiffness of the beams in the relevant direction:

EI c=31000000⋅
0.3⋅0.53

12
=96875 kNm2

17

Figure 5 – The concrete planar frame geometry 
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C.1 column (see Fig. 5):

The distribution factors:

At bottom:

k 1=0 (fixed support);

At top:

k 2=
(EI c / Lc4)above+(EI c/ Lc1)below

∑ c EI b/ Lb

=

20925
3

+
20925

4

2
96875

6
+2

96875
6

=0.189

By the beams rotational stiffnesses we assumed a single curvature due to the non-sway situation.

The beta factor of the buckling length:

β 1=
Lcr1

Lc1

=0.5⋅√(1+
k 1

0.45+k 1
)(1+

k 2

0.45+k 2
)=0.5⋅√(1+

0
0.45+0)(1+

0.1896
0.45+0.189)=0.569

C.4 column (see Fig. 5):

The distribution factors:

At bottom:

k 1=
(EI c/ Lc4)above+(EI c / Lc1)below

∑ c EI b/ Lb

=

20925
3

+
20925

4

2
96875

6
+2

96875
6

=0.189

By the beams rotational stiffnesses we assumed a single curvature due to the non-sway situation.

At top:

k 2=
(EI c / Lc7 )above+( EI c / Lc4)below

∑ c EI b/ Lb

=

20925
3

+
20925

3

2
96875

6
+2

96875
6

=0.216

By the beams rotational stiffnesses we assumed a single curvature due to the non-sway situation.

The beta factor of the buckling length:

 β 4=
Lcr4

Lc4

=0.5⋅√(1+
0.189

0.45+0.189)(1+
0.216

0.45+0.216)=0.655

18
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Based on FEM-Design auto buckling length calculation method the results are:

β 1FEM=0.576

β 4FEM=0.663

The difference between the calculations is less than 1.5%. Fig. 6 shows the results based on
FEM-Design.

19

Figure 6 – The buckling lengths of the columns in non-sway case
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2.1.2 Sway case

If the frame is a sway frame the method according to EN 1992-1-1:2004 Chapter 5.8.3.2. is the
following:

C.1 column (see Fig. 5):

The distribution factors:

At bottom:

k 1=0 (fixed support);

At top:

k 2=
(EI c / Lc4)above+(EI c/ Lc1)below

∑ c EI b/ Lb

=

20925
3

+
20925

4

6
96875

6
+6

96875
6

=0.063

By the beams rotational stiffnesses we assumed double curvature due to the sway situation.

The beta factor of the buckling length:

 β 1=
Lcr1

Lc1

=max[ √1+10
k 1⋅k 2

k 1+k2

(1+
k1

1+k 1)⋅(1+
k 2

1+k 2)]=max[ √1+10
0⋅0.063

0+0.063

(1+
0

1+0)⋅(1+
0.063

1+0.063)]=1.06

C.4 column (see Fig. 5):

The distribution factors:

At bottom:

k 1=
(EI c/ Lc4)above+(EI c / Lc1)below

∑ c EI b/ Lb

=

20925
3

+
20925

4

6
96875

6
+6

96875
6

=0.063

By the beams rotational stiffnesses we assumed double curvature due to the sway situation.

At top:

k 2=
(EI c / Lc7 )above+( EI c / Lc4)below

∑ c EI b/ Lb

=

20925
3

+
20925

3

6
96875

6
+6

96875
6

=0.072

20
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By the beams rotational stiffnesses we assumed double curvature due to the sway situation.

The beta factor of the buckling length:

 β 4=
Lcr4

L4

=max[ √1+10
0.063⋅0.072
0.063+0.072

(1+
0.063

1+0.063)⋅(1+
0.072

1+0.072)]=1.156

Based on FEM-Design auto buckling length calculation method the results are:

β 1FEM=1.07

β 4FEM=1.15

The difference between the calculations is less than 1%. Fig. 7 shows the results based on FEM-
Design.

Download link to the example file:
http://download.strusoft.com/FEM-Design/inst180x/models/9.5.1 Auto Buckling length 
concrete building.str

21

Figure 7 – The buckling lengths of the columns in non-sway case

http://download.strusoft.com/FEM-Design/inst180x/models/9.5.1%20Auto%20Buckling%20length%20concrete%20building.str
http://download.strusoft.com/FEM-Design/inst180x/models/9.5.1%20Auto%20Buckling%20length%20concrete%20building.str
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2.2 Steel frame building

In this example we will calculate the buckling lengths of the indicated isolated columns (C.2;
C.6, see Fig. 8) according to the method in Ref. [1] which is basically indentical with the given
method in the former ENV 1993-1-1:1992 Annex E. After the hand calculation we will compare
the results with FEM-Design automatic buckling length calculation results.

The geometry is shown in Fig. 8. The material is S235, the outer columns have HEB220, the
inner columns have HEB260, the beams have IPE450 and the beams at the roof have IPE360
cross-sections.  We will  calculate the buckling lengths of the middle isolated columns at  the
ground floor and at the first floor.  The supports are hinged at the bottom of the ground floor
columns.

2.2.1 Non-sway case

If the frame is a non-sway frame the method according to Ref. [1] is the following:

The bending stiffness of the columns (HEB260):

EI c=210000000⋅0.0001492=31332kNm2

The bending stiffness of the beams (IPE450):

EI b=210000000⋅0.0003374=70854 kNm2

The rotational stiffness coefficient of the columns being analyzed (C.2 and C.6):

K c=4
EI c

Lc

=4
31332

3.5
=35808 kNm

22

Figure 8 – The steel planar frame geometry 
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C.2 column (see Fig. 8):

The distribution factors:

At bottom:

η1=
K c

K c

=1.0 (hinged support)

At top:

η2=
K c+K 2

K c+K 2+K 21+K22

=

4
EI c

Lc

+4
EI c

Lc

4
EI c

Lc

+4
EI c

Lc

+2
EI b

Lb

+2
EI b

Lb

=
35808+35808

35808+35808+2
70854

6.5
+2

70854
6.5

η2=0.622

By the beams rotational stiffnesses we assumed a single curvature due to the non-sway situation.

The beta factor of the buckling length:

β 2=
1+0.145(η1+η2)−0.265η1η2

2−0.364 (η1+η2)−0.247η1η2

=
1+0.145(1.0+0.622)−0.265⋅1.0⋅0.622
2−0.364 (1.0+0.622)−0.247⋅1.0⋅0.622

β 2=0.852

C.6 column (see Fig. 8):

The distribution factors:

At bottom:

η1=
K c+K 1

K c+K1+K 11+K12

=

4
EI c

Lc

+4
EI c

Lc

4
EI c

Lc

+4
EI c

Lc

+2
EI b

Lb

+2
EI b

Lb

=
35808+35808

35808+35808+2
70854

6.5
+2

70854
6.5

η1=0.622

By the beams rotational stiffnesses we assumed a single curvature due to the non-sway situation.

At top:

η2=
K c+K 2

K c+K 2+K 21+K22

=

4
EI c

Lc

+4
EI c

Lc

4
EI c

Lc

+4
EI c

Lc

+2
EI b

Lb

+2
EI b

Lb

=
35808+35808

35808+35808+2
70854

6.5
+2

70854
6.5

η2=0.622

23



Flexural buckling length FEM-Design 18 

By the beams rotational stiffnesses we assumed a single curvature due to the non-sway situation.

The beta factor of the buckling length:

β 6=
1+0.145(η1+η 2)−0.265η1η 2

2−0.364 (η1+η2)−0.247η1η2

=
1+0.145(0.622+0.622)−0.265⋅0.622⋅0.622
2−0.364(0.622+0.622)−0.247⋅0.622⋅0.622

β 6=0.743

Based on FEM-Design auto buckling length calculation method the results are:

β 2FEM =0.852

β 6FEM=0.742

The calculations are identical to each other (see Fig. 9).

2.2.2 Sway case

If the frame is a sway frame the method according to Ref. [1] is the following:

C.2 column (see Fig. 8):

The distribution factors:

At bottom:

η1=
K c

K c

=1.0 (hinged support)

24

Figure 9 – The buckling lengths of the columns in non-sway case
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At top:

η2=
K c+K 2

K c+K 2+K 21+K22

=

4
EI c

Lc

+4
EI c

Lc

4
EI c

Lc

+4
EI c

Lc

+6
EI b

Lb

+6
EI b

Lb

=
35808+35808

35808+35808+6
70854

6.5
+6

70854
6.5

η2=0.354

By the beams rotational stiffnesses we assumed double curvature due to the sway situation.

The beta factor of the buckling length:

β 2=√ 1−0.2(1.0+0.354)−0.12⋅1.0⋅0.354
1−0.8(1.0+0.354)+0.6⋅1.0⋅0.354

β 2=2.305

C.6 column (see Fig. 8):

The distribution factors:

At bottom:

η1=
K c+K 1

K c+K1+K 11+K12

=

4
EI c

Lc

+4
EI c

Lc

4
EI c

Lc

+4
EI c

Lc

+6
EI b

Lb

+6
EI b

Lb

=
35808+35808

35808+35808+6
70854

6.5
+6

70854
6.5

η1=0.354

By the beams rotational stiffnesses we assumed double curvature due to the sway situation.

At top:

η2=
K c+K 2

K c+K 2+K 21+K22

=

4
EI c

Lc

+4
EI c

Lc

4
EI c

Lc

+4
EI c

Lc

+6
EI b

Lb

+6
EI b

Lb

=
35808+35808

35808+35808+6
70854

6.5
+6

70854
6.5

η2=0.354

By the beams rotational stiffnesses we assumed double curvature due to the sway situation.

The beta factor of the buckling length:

β 6=√ 1−0.2(0.354+0.354)−0.12⋅0.354⋅0.354
1−0.8(0.354+0.354)+0.6⋅0.354⋅0.354

β 6=1.287
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Based on FEM-Design auto buckling length calculation method the results are:

β 2FEM =2.31

β 6FEM=1.29

The calculations are identical to each other (see Fig. 10).

Download link to the example file:
http://download.strusoft.com/FEM-Design/inst180x/models/9.5.2 Auto Buckling length steel 
building.str

26

Figure 10 – The buckling lengths of the columns in sway case

http://download.strusoft.com/FEM-Design/inst180x/models/9.5.2%20Auto%20Buckling%20length%20steel%20building.str
http://download.strusoft.com/FEM-Design/inst180x/models/9.5.2%20Auto%20Buckling%20length%20steel%20building.str
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2.3 A column and a supporting beam with various angles

Fig. 11 shows the analyzed problem. The vertical column is HEB260 and the bottom is fixed.
The horizontal supporting beam is IPE360 and connected to the upper end of the column (the
other end of the beam is simply supported). The angle of the connecting beam is varied between
0o-90o. The plain of the various angle beams is perpendicular to the column (see Fig. 11) thus the
supporting beam is always horizontal.

The  connecting  beam rigidity  has  effect  on  the  stiff  and the  weak buckling  lengths  of  the
column. After the calculation of the buckling lengths of the column based on the solution of the
stability eigenvalue problem (stability calculation) we compared the beta factors with the FEM-
Design automatic flexural buckling calculation results.

 

Around the stiff direction the buckling length is increasing because the supporting effect of the
connecting beam is decreasing. Around the weak direction the buckling length is decreasing
because the supporting effect of the connecting beam is increasing (see Fig. 11, Table 1 and 2).

The critical forces of the hinged-hinged column (so-called Euler force) based on the stability
calculation in FEM-Design are:

F cr1=11672kN around stiff direction,

F cr2=4230kN around weak direction.

Be  careful,  these  values  contain  the  shear  deformation  and  not  only the  deformation  from
bending because in FEM-Design the beam modell is the Timoshenko modell.

27

Figure 11 – The fixed column with various angle supporting beam
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For  example  the  beta  factor  around  stiff  direction  based  on  the  solution  of  the  stability
eigenvalue problem when the α angle is equal to 76o:

β 76o

stiff
=√ F cr1

F76 o

stiff =√ 11672
22877

=0.714

The differences between the two calculation methods are less than 6% (see Table 1 and 2). In
FEM-Design by the automatic beta factor calculation the column was assumed as a non-sway
column according to the original supporting condition (see Fig. 11).

Fig. 12 shows the tendency of the beta factors in function of the supporting beam angle.
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Table 2 – The beta factor around the weak direction in the function of the given angle

[-]
0 8600 0,701 0,700 -0,0019
14 8963 0,687 0,665 -0,0320
27 9811 0,657 0,616 -0,0619
37 10737 0,628 0,587 -0,0648
45 11523 0,606 0,571 -0,0576
53 12295 0,587 0,560 -0,0453
63 13171 0,567 0,551 -0,0277
76 13952 0,551 0,545 -0,0102
90 14284 0,544 0,543 -0,0022

Angle Critical load Beta factor Beta factor Difference
[degree] [kN] Eigenvalue AutoBucklingLength

Table 1 – The beta factor around the stiff direction in the function of the given angle

[-]
0 30373 0,620 0,589 -0,0499
14 29948 0,624 0,592 -0,0517
27 28899 0,636 0,600 -0,0559
37 27665 0,650 0,611 -0,0593
45 26552 0,663 0,623 -0,0604
53 25410 0,678 0,638 -0,0587
63 24076 0,696 0,660 -0,0521
76 22877 0,714 0,686 -0,0396
90 22372 0,722 0,700 -0,0309

Angle Critical load Beta factor Beta factor Difference
[degree] [kN] Eigenvalue AutoBucklingLength
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Download link to the example file:
http://download.strusoft.com/FEM-Design/inst180x/models/9.5.3 A column and a supporting 
beam with various angles.str

29

Figure 12 – The tendency of the beta factors (stiff 1, weak 2) in the function of the various angle
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