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1 Analysis calculations 
 

 
 

1.1 Finite element calculations 
 
 

1.1.1 Basics 

FEM-Design can perform the following calculations: 

• linear static analysis for all structure types, 

• static analysis according to second order theory for spatial structures, 

global stability analysis-buckling shapes and critical loads for spatial 

structures, 

• dynamic analysis-vibration shapes and eigen frequencies for all structure 
types, 

• seismic calculation-response spectra method for 3D models, 

• non-linear static analysis-supports resisting only compression, 

• cracking analysis-tracking of the cracking process. 
 

 

1.1.2 Static analysis 

The linear static analysis is the solution of the equation: 
 

K u = Q 
 

linear, inhomogenous equation system with constant coefficients, which is 

derived from the displacement method, 
 

where:  K the coefficient matrix of the system, the so called stiffness matrix, 

Q matrix of the load vectors, derived from the loads of every load 

cases, 

u matrix of the displacement of nodes. 
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FEM-Design contains two equationsystem-solvers. One of them is the so called 

frontal type, the other is the SKYLINE type solver. Both methods are optimized 

for the available memory, and they contain very efficient node numbering opti- 

mization for minimizing of on one hand the front width, on the other hand the 

band width. 

 
The results of the linear static analysis are always the node displacements, reac- 

tion forces and internal forces or stresses of elastic elements. 

 
Note, that an average value is taken for the internal forces of elements in nodes 

of region or plate where more elements of the same kind are connected, in order 

to avoid discontinuities that does not exist in reality but generated by the finite 

element method during the calculation. 
 

 

1.1.3 2nd order analysis 

Calculation of structures based on the linear theory mean that the equilibrium 

conditions are determined according to the shape of the structure before loading. 

In case of larger deformations the results would be more accurate if the change 

of structure geometry was taken into consideration. 

 
In case of flexible, elastic structures the approximate solution for this problem is 

the second order theory which gives satisfying accurate results for practice. In 

this theory the deformations during the loading are only taken into consideration 

in the relationship of membrane forces and bending moments. For example, at a 

straight bar the normal force influences the bending moments because of the de- 

flections perpendicular to the bar, and it modifies of course the deflections. Con- 

sequently, the stiffness matrix of the system is a linear function of the normal 

internal forces (in case of plane plate, membrane forces): 
 

[K + KG (N)] u = Q 

where K is the original (linear) stiffness matrix, u is the matrix of the node dis- 

placement, Q is the matrix calculated from the loads, and KG is the geometrical 

stiffness matrix. N in the argument means the distribution of the normal (or 

membrane) forces of the structure. 
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Since the stiffness is a function of the normal force distribution, the calculation 

has to be performed in two steps. First, the normal forces of the elements have to 

be calculated by using the K matrix. In the second step KG can be determined 

according to the previously calculated N, then the modified displacements, in- 

ternal forces and stresses can be calculated by the [K + KG] matrix. 

 
It is possible, that the N normal force distribution calculated from the loads hap- 

pens to result in a singular [K + KG] modified coefficient matrix, which means 

that the equation system can not be solved. This phenomenon occurs if the load 

is larger then the critical load of the system which makes it lose stability. 
 
 

1.1.4 Stability analysis 

At description of second order theory it was pointed out that the resultant stiff- 

ness of the system depends on the normal force distribution. In case of linear 

elastic structures the geometrical stiffness matrix is a linear function of normal 

forces and consequently of loads: 

KG (λN) = λ KG (N) 

The structure loses its loadbearing capability if the normal forces decrease the 

stiffness to zero, i.e. the resultant stiffness matrix becomes singular: 

det [K + λ KG (N)] = 0 

It is an eigenvalue calculation problem, and the smallest λ eigenvalue is the cri- 

tical load parameter. 

 
The calculation has to be performed in two steps. First, the normal forces of the 

elements has to be calculated by using the K matrix. In the second step KG and 

the λ parameter can be determined. The critical load is the product of the load 

and the λ parameter. The above mentioned eigenvalue problem is solved by the 

so called Lanczos method in FEM-Design. The results of the calculations are as 

many buckling shapes as the user required and the matching λ critical load para- 

meters. 
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1.1.5 Linear dynamic 

If the loads acting on a structure vary quickly, the node displacements of the 

structure also vary as a function of time. In this case the outer loads-according to 

the d’Alambert theorem-should be extended by the distributed inertial forces 

which are proportional to the acceleration of the points of the structures. This re- 

sults the following basic equation, if the dumping of the structure is ignored: 
 

K u = Q - M u'' 
 

where: M is the diagonal mass matrix of the structure and u'' is the matrix 

of the node acceleration (second derivative of the node displace- 

ments and rotations). 

 
If the structure is unloaded, i.e. the free oscillation is analysed, all points of a 

structure with statically determined supports move periodically, according to the 

following equation: 

u = A sin (ωt) 

If Q = 0, it results in the following eigenvalue problem: 

[K - ω2 M] A = 0 

where: ω is the eigen angular frequency and A is the matching vibration 

shapes, or amplitude distribution. The eigenvalue problem is solved 

by the so called Lanczos method in the 3D and by the subspace ite- 

ration method in the 2D modules of FEM-Design. 
 

 

1.1.6 Seismic analysis 
 

 

1.1.6.1 Introduction 

Seismic calculation is a special case of forced vibration calculation, when the 

exciting effect is the ground acceleration which is time dependent and of course 

not periodical. The response of the structure to the ground acceleration will be a 

vibration like motion. The structure gets forces of inertia which is calculated ac- 

cording to the Newton’s law (F = m a) and it is proportional to the mass and ac- 

celeration. These equivalent forces of course cause internal forces, stresses and 

if they are larger than the limit value the structure may collapse. 
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From the above explanation we found that originally this is a dynamic phenome- 

non when the acceleration and so the inertia forces change in each second. The 

interaction of the ground and structure is complicated so in a given time the ac- 

celeration of the structure depends on several components: 

• ground acceleration (the seismic magnitude and its development on time), 

• the elasticity of the structure, 

• the mass and mass distribution of the structure, 

• the connection between the structure and ground, namely soil type. 

 
Another complicated problem is to define exact direction of the ground motion 

in the seismic investigation. Generally the ground movement is assumed as an 

arbitrary horizontal motion but the vertical motion also may cause problem to 

the structure. 

 
Fundamentally the calculation process can be divided into three methods: 

 

Time history 

This calculation is carried out as an ordinary forced vibration when the excita- 

tion is a time dependent acceleration function. These functions can be registered 

or simulated seismograms. Mathematically we always solve the differential 

equation system of the vibration by a suitable method (e.g. step-by-step met- 

hod). From the results of the equation system (means the displacement of the 

structure) the internal forces can be calculated and the design can be performed. 

 
Theoretically the method is exact, but several circumstances strongly constrain 

the usage: 

• Statistically the number of seismograms are insufficient, 

• The calculation is very complicated and the runtime is long. 

 
Because of the above mentioned difficulties, this method is not widespread and 

is not implemented in FEM-Design. 

 

Modal analysis 

As was mentioned in the above method, the vibrations arising from the seismic 

effect are difficult to predict. So the modal analysis assumption starts from the 
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investigation of the most unfavorable ground motion directions and the period 

time. 

 
Expected value of the maximal accelerations belongs to the individual periods 

which are prescribed in the national codes and named as acceleration response 

spectrum. The horizontal axis shows the frequency or vibration time of a single 

degree mass-spring system and the vertical axis shows the maximum correspon- 

ding acceleration. (In the Civil Engineering practice vibration period is used ins- 

tead of frequency.) 

 
The results which belong to the different ground motion directions and structu- 

ral eigenfrequencies are summarized on the basis of the probability theory, 

which assumes that not all the effects appear in the same time. Most frequently 

used summation rule is the SRSS (Square Root of Sum of Squares). 

 
Although the modal analysis is the most accepted method all over the world (as 

well as in EC8), it has some disadvantages. Some of them are listed as follows: 

• The results which are calculated using the SRSS summation rule are not 

simultaneous. For example for a bending moment in a point of the structu- 

re we can’t show the simultaneous normal force in the same point, because 

the  summation is carried out from component to component separately. 

Consequence of the summation rule, other calculations (second order app- 

lication, stability analysis) are not interpreted, 

• Mainly from the application of the statistical method, the graphical results 

weakly can be followed compare to the results of statical calculation, 

• In a lot of cases greate number of vibration shapes should be calculated to 
reach a reasonable results which requires long calculation time. 

 
Despite of all disadvantages of this method, we can expect most trustable results 

if the code requirements are fulfilled. 

 

Lateral force method (Equivalent static load method) 

The lateral force method partly eliminates the disadvantages of the previous 

method with simplification in certain cases. The method postulates that the dis- 

placement response of the structure for ground motion can be described with 

one (or both x', y' directions) mode shape. While this means generally a simpli- 
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fication or approximation, this method is suitable for a part of the structure (EC8 

prescribes the condition of application). In this method the mode shape of the 

structure is a linear deviation or it is equivalent to the calculated fundamental vi- 

bration shape. In the case of linear deviation or mode shape the period also can 

be calculated by approximate formula. 

 
The application of this method gives possibility to transform the seismic lateral 

forces to simple static loads and it is applicable as follows: 

• these loads (seismic load cases) can be combined with other static loads, 

• second order and stability analysis can be performed, 

• it is also possible to use these loads for hand calculation, so the results can 
be checked easily. 

 
This method is usable in FEM-Design with two options if the code permits: 

• assumption of linear deviation shape when the period also can be defined 
by the user (Static, linear shape), 

• application of the calculated fundamental vibration shape as the deformed 
shape of the structure and its period (Static, mode shape). 

 
Remarks in application of national codes: 

• Before releasing the current version of FEM-Design, only the Eurocode 

and Norwegian national code contained special description for seismic 

calculation. In the other codes FEM-Design supports only the general mo- 

dal analysis, 

• Most of the countries did not prepare the National Application Document 

(NAD) for the universal Eurocode, so the program uses the general pres- 

cription, 
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• Supported national codes and methods: 
 

British                      Modal analysis 

Code independent  Modal analysis 

Danish                              Modal analysis 

Eurocode (NA:--) EC8-2005 (No NAD, static method, modal analysis) 

Eurocode (NA:British) EC8-2005 (No NAD, static method, modal analysis) 

Eurocode (NA:German) EC8-2005 (No NAD, static method, modal analysis) 

Eurocode (NA:Italian) EC8-2005 (No NAD, static method, modal analysis) 

Finnish (B4:2001)           Modal analysis 

Finnish (By50:2005) Modal analysis 

German                            Modal analysis 

Hungarian                        Modal analysis 

Norwegian                       NS3491-12 (static method, modal analysis) 

Swedish                           Modal analysis 

 

• Norwegian code differs from Eurocode in a few places, so they are revie- 
wed together and the differences are marked separately. 

 

 

1.1.6.2 Input data 
 
1.1.6.2.1 Dynamic Calculation 

(vibration shape and period) and Mass definition 
To calculate the seismic effect it is necessary to know the vibration shapes and 

corresponding periods, except the static method (lateral force method: linear for- 

ce distribution). Therefore a dynamic calculation should be done before perfor- 

ming seismic calculation, which gives sufficient vibration shapes of the 

structure. To perform the dynamic calculation, it is necessary to define mass 

distribution which can be defined in Load tab as concentrated mass or load 

case-mass conversion. 

 
According to EC8 3.2.4(2), mass distribution should be made in 

the following way: 
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ΣGk, j"" + ""ΣψE, iQk, i   

where:   ψE, i is the combination coefficient for variable action i (see EC8 

4.2.4), it shall be computed from the following expression: 

ψE, i = ϕ ψ2, i 

 
The recommended values for ϕ are listed in EC8 Table 4.2. 

 
The above formula means that mass conversation is made from all dead load 

without any factor, also masses in gravity direction temporary loads with redu- 

ced value. 

 

1.1.6.2.2 Design spectrum 
 

The program contains EC8 and NS3491-12 predefined design spectra or 

the user can define its own spectra if necessary. The vertical spectrum is 

necessary when the vertical affect taken into account. 
 

EC8 design spectrum 

The code gives the horizontal and vertical spectra and although the value of va- 

riables is prescribed, they can be modified if necessary. 
 

 
 

Data of horizontal design spectra: 
 

Type type of spectra, which there are two in the code, 
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Ground ground type, which can be A, B, C, D and E, 
 

The above two data specify the values of S, TB, TC and TD, which can be found 

in EC8, table 3.2 and 3.3. 
 

ag is the design ground acceleration on type 
A ground (ag = γI ag R), 

S is the soil factor, 

q is the behavior factor, which depends on material and type of 

the structure, 

beta (β) is the lower bound factor for the horizontal design spectrum. 

 
The Sd(T) horizontal design spectrum is based on EC8 3.2.2.5 as follow: 

 

0 ≤ T ≤ TB                   Sd(T) = agS [
2

3
+

T

TB

(
2.5

q
−

2

3
)] 

TB ≤ T ≤ TC                 Sd(T) = agS
2.5

q
 

TC ≤ T ≤ TD                 Sd(T) = {
= agS

2.5

q

T𝐶

T
≥  𝛽ag

} 

TD ≤ T                           Sd(T) = {
= agS

2.5

q

T𝐶T𝐷

T2

≥  𝛽ag

} 

 

The built-in vertical design spectrum is derived from the horizontal spectrum 

using the aυg / ag multiplicator which can be found in EC8 table 3.4 and descri- 

bed in 3.2.2.5(5)-(7). 
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Other input parameters (Others tab) 

In the Others tab, the user should set some parameters that effect the calculation 

and results. 
 

Ksi(ξ)           is the viscous damping ratio, expressed as a percentage, gene- 

rally 5%. This data is used in modal analysis when the sum- 

mation of the effect of the same direction vibration shapes is 

carried out by the CQC (Complete Quadratic Combination), 

see later. 
 

qd              is the displacement behavior factor, assumed equal to q unless 

otherwise specified. 
 

Foundation levelwhen Static-linear shape is used, the program assumes that 

the foundation level is defined on that height. It means the pro- 

gram calculates the mass height from that level. In the other 

two calculation methods (Static-mode shape and Modal 

analysis) base shear force is drawn in that level and it is taken 

into consideration in the so called reduced mass calculation 

(details in Effective mass setting). 
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Data of design spectrum about NS3491-12 
 

 
 

The built-in horizontal design spectrum is based on the following formula: 
 

Sd(Ti) = kQ kS γ1 ag Se(Ti) kf, spiss 

where: Ksi(ξ) is the declining ratio for the structure, given in %. Usually 5%, 

kQ is a structure factor, dependent on the type of structure, 

kS is a soil factor, dependent on the type of ground, 

Gamma 1(γ1) is a seismic factor, dependent on the seismic class, 

ag  is the maximum ground acceleration, dependent on location and 

reference period, 

Se(Ti) is the acceleration for the period Ti in the normalized response 

spectra, see below, 

kf,spiss is a factor dependent on the reference period used. 

Vertical design spectrum formula: 

 
 
 

Sνd(Tν,i) = kν γ1 ag Se(Tν,i) kf, spiss 

 

where kν is the ratio between horizontal and vertical response spectra, 

mostly set to 0,7. 
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The normalized response spectrum in Norwegian code is based on four different 

formulas, each covering a part of the possible periods from 0 to 4 seconds. Peri- 

ods over 4 seconds has to be treated in a different way anyhow, and can therefo- 

re be based on a manually written response spectrum. 

 
In FEM-Design, we assume, the spectrum is constant for periods over 4 seconds 

and equal to the value of Sd(T = 4). 

 

0 ≤ T ≤ TB                   Se(T) = 1 +
T

TB

(2.5𝜂 − 1) 

TB ≤ T ≤ TC                 Se(T) = 2.5𝜂 

TC ≤ T ≤ TD                 Sd(T) = 2.5𝜂
T𝐶

T
 

TD ≤ T ≤ 4                   Sd(T) = 2.5𝜂
T𝐶T𝐷

T2
 

where:   T is the vibration period, TB = 0,1sec, TC = 0,25sec and TD = 1,5sec 

η is a factor describing how the swaying declines, calculated as: 

10 ⁄ (5 + ξ) ≥ 0, 55 
 

Other input parameters (Others tab) 
 

 
 

In the NS3491-12 code only foundation level should be set. 
 

Design spectra in the other national codes 

Except for the above mentioned two codes, the user has in all cases to define the 

spectra in table or in a graphical way. In the Others tab only the foundation le- 

vel should be set. 
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1.1.6.3 Calculation parameters and calculation steps 

Calculation input parameters can be set in the Calculation dialog in Analysis/ 

Seismic analysis in the Setup as can be seen below. 
 

 
 

Remark: Setup for the Seismic calculation can be done at any time, but the 

Seismic calculation could be performed only after Eigenfrequency 

calculation. 

 

1.1.6.3.1 Calculation methods selection 

National codes always provides which Seismic calculation method to be perfor- 

med for different structure, where and when it should be performed and what 

other effects to be considered (torsional effect, P-Δ effect). As an example in 
Norwegian code NS3491-12, seismic calculation is not necessary if the accele- 
ration from the design spectrum is Sd(T1) ≤ 0,5 m/s2  where T1  is the base vibra- 

tion period. In EC8 3.2.1 some criteria can be found. 
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FEM-Design provides three types of calculation methods in harmony with EC8 

and NS3491-12. 
 

 
 

These three methods really cover two basic concepts: 

• Lateral force method, where the base shear force can be distributed in 
two ways (Static linear/mode shape), 

• Modal response spectrum analysis (Modal analysis). 
 

Lateral force method (in some codes: equivalent static analysis) 

EC8 as well NS3491-12 uses this method. The user may not use this method in 

other codes. 

 
This method can be used to calculate the seismic effect in horizontal plan, x' 

and/or y' direction. The main point of this method is to calculate base shear for- 

ce taking into account the base vibration period and design spectrum in x' or y' 

direction which is distributed into those nodes of the structure where there are 

nodal masses. The base shear force formula is taken from EC8 4.3.3.2.2(1)P: 
 

Fb = Sd(T1) m λ 

where:   Sd(T1) is the value of design spectrum at T1 (means the acceleration 

of the structure), 

T1 is the fundamental period of vibration of the building for lateral 

motion in the direction considered, 

m is the total mass of the building, above the foundation or above 

the top of a rigid basement. Remark: the FEM-Design always ta- 

kes into account the total mass of the structure including the base- 

ment, 

λ is the correction factor, the value of which is equal to: 0,85 if 

T1 ≤ 2 TC  and the building has more than two storeys, or λ = 1,0 
otherwise. 

 

From this formula it can be seen that the base shear force is nothing else than 

the total seismic force of inertia (from second Newton’s law) which acts bet- 

ween the ground and the structure. 
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Remarks for NS3491-12: 

• There is no λ (λ = 1,0). 

• According to the code, if Sd(T1) ≤ 0,5 m/s2, seismic analysis can be suspen- 
ded, so when the above condition is fulfilled, it is not necessary to incorpora- 

te seismic loads in the design. 

 
Distribution of the base shear force can occur in two ways which is described 

below. 
 

Linear distribution of horizontal seismic forces (Static, linear shape) 

In this method the distribution of base shear force happens according to a simp- 

lified fundamental mode shape which is approximated by horizontal displace- 

ments that increased linearly along the height (see EC8 4.3.3.2.3(3)). The 

seismic action effects shall be determined by applying to the x' or y' direction. 

The horizontal forces are: 

Fi = Fb

zimi

∑zjmj

 

where:  Fb is the seismic base shear force, 

Fi is the horizontal force acting on the place of mi, 

zi, zj are the heights of the masses mi, mj above the foundation level. 

 
According to NS3491-12 the distribution formula is: 

Fi = Fb

zi
𝑘mi

∑zj
𝑘mj

 

where:    k = 1 for T1 ≤ 0,5 sec 

k = 2 for T1  ≥ 2,5 sec 
 

In the 0,5-2,5 interval the value of the k is interpolated linearly. 
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As a matter of fact eigenfrequency calculation is not necessary for this method, 

because giving the base period time in x' and y' direction is enough for the cal- 

culation. Practically, eigenfrequency calculation is performed before setting this 

data, but these data can be defined using experimental formulas as well. Investi- 

gation can be done in x' or y' direction, or both together. 

 
The user may set the calculation direction to be performed by selecting the desi- 

red direction. To set the desired x'-y' direction user should give the α angle (α is 

the angle between the global x and x'). α = 0,0 means x'-y' directions coincide 
with global x-y directions. More details can be found in Horizontal direction 

setting for seismic calculation to set the correct seismic effect direction (α). 
 

 
 

Some limitations of this method: 

• Unusable if the whole foundation is not in the same plane, 

• Unusable if the horizontal foundation is elastic. 
 

 
 

If any of the above mentioned situations happen, the static, mode shape or mo- 

dal analysis should be used. 
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Distribution of seismic forces according to fundamental mode shapes 

(Static, mode shape) 

In this method the distribution of base shear force happens according to the base 

vibration shape (see EC8 4.3.3.2.3(2)P). The horizontal forces acting on the pla- 

ce of mi are: 

Fi = Fb

simi

∑sjmj

 

where:   si, sj are the horizontal displacements of masses mi, mj in the funda- 

mental mode shape. 

 
The following table shows how to select the base vibration shape. The table con- 

tains all mode shapes (No.), the vibration time (T(s)) and effective masses of the 

mode shapes in x' and y' directions (mx(%) and my(%)). As you can see the ef- 

fective masses are given in a relative form to the total or reduced mass of the 

structure. The reduced mass means the total mass above the foundation or above 

the rigid basement. The value of the effective mass is refered to how the mode 

shape respond to a ground motion direction, so the effective mass shows the par- 

ticipation weight of the mode shape. 

 
It is recommended to select that mode shape which gives the largest effective 

mass as the fundamental mode shape. The method allows to Select one mode 

shape in x´ or/and y´ direction(s). 
 

Remark: 

The calculation of base shear 

force is performed according 

to the total mass of the struc- 

ture and not the effective 

mass, as was introduced ear- 

lier in Lateral force method. 
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Modal response spectrum analysis (modal analysis) 

This method can be used in all national codes. 

 
The essence of the method is the calculation of the structural response for diffe- 

rent ground motions by the sufficient summation of more vibration shapes. Met- 

hod gives possibility to take into account full x, y and z direction investigation. 

In the table below, more vibration mode shape could be selected in x', y' and z' 

directions if necessary. The last row of the table shows that in a given ground 

motion direction how large is the sum of the considered effective masses compa- 

red to the total or reduced mass of the structure. 

 
According to EC8 4.3.3.3.1(3) and NS3491-12 sum of the effective mass of the 

chosen mode shapes - at least in horizontal direction - should reach 90% of total 

mass. Additionally every mode shape has to be taken into account which effecti- 

ve mass is larger than 5%. 
 

Remarks: If the sum of the effective mass is much smaller than 90%, eigen- 

frequency calculation should be done for more shapes in order to 

reach 90%. 

In vertical direction lots of mode shapes should be ensured to reach 

the 90% of total mass; highly recommended to check the national 

code whether it is necessary to examine the vertical effect. 

The mode shapes which have small effective mass may be neglec- 

ted, because their effect in result is very small but the calculation 

time increases. 
 

 
 

According to the EC8 and NS3491-12 the summation rule in the individual di- 
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rections can be selected in the lower part of the seismic analysis setup dialog. In 

all other codes there is no possibility to choose, the SRSS rule is used for sum- 

mation. 

 
According to EC8 4.3.3.3.2, the summation rule possibilities are the following: 

 

 

where:   EE is the seismic action effect under consideration 

(force, displacement, etc.), 

EEi  is the value of this seismic action effect due to the vibration 

mode i, 

rij is the interaction between two vibration periods taking into ac- 

count the declining ratio: 

rij =
8𝜉2(1+𝑟)𝑟3/2

(1−𝑟)2+4𝜉4𝑟(1−𝑟)2
                and r = Tj / Ti 

The CQC (Complete Quadratic Combination) summation rule might be adopted 

when individual direction, two vibration modes are dependent to each other if 

they satisfy the following condition: 

Tj / Ti > 0,9 with Tj ≤ Ti 

 
FEM-Design always applies the selected rule for the summation except if the 

Automatic is highlighted. If the Automatic is selected then the rule selection 

procedure is as follows: 

• Always three directions (if there where more than one mode shape selected 

in that column) is investigated weather all mode shapes are independent 

from each other or not. 

• If at least one dependent situation exists in a direction, the program automa- 

tically uses the CQC rule for all mode shapes in that direction, otherwise 

SRSS rule is used. 
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1.1.6.3.2 Other setting possibilities 
 

Horizontal direction setting for seismic calculation 

Generally codes speak about the seismic calculation in X-Y directions. However 

results in these directions give the maximum effect if the mass and elastic pro- 

perties of the structure ensure that the calculated mode shapes lay in X-Z or Y-Z 

plane. Nevertheless it is not always achieved in practice. To achieve the unfavo- 

rable direction, where the results from a ground motion are maximum, the user 

can Set the Alpha angle or may get the program suggestion by using Auto but- 

ton. The most unfavorable direction can be found when any of the mx', my' is 

zero and the other is maximum in a row. Using Auto button, program gives the 

most unfavorable directions, but there are certain restrictions: this directions can 

be ensured only for one mode shape. The program selects the row where the ef- 

fective mass is the maximum. 

 
As an example, on the left hand side figure you can see a badly adjusted x'-y' di- 

rection. Appling Auto button, program arranges the direction for the 73,8% ef- 

fective mass and correct it to 98,3%. 
 

 
 

Of course this also can be reached if the user rotates the whole geometry with a 

specified angle. 
 

Effective mass setting 

FEM-Design always takes into account the entire mass of the structure in the 

calculation of base shear force which was mentioned in Lateral force method. 

It was also mentioned, EC8 defines the total mass without the basement, this is 

called Reduced mass in this manual. The effective masses are generally compa- 

red to the Reduced mass, but this is not valid for the massive basement with 

elastic foundation. If the above mentioned situation is the case, it might happen 

that the sum of the effective masses of a column is larger than 100%. The user 

may compare the modal effective masses to the total mass or reduced mass by 

pushing the Eff. mass button. 
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In FEM-Design Reduced mass means the difference between the 

total mass of the structure and the basement mass. The basement 

mass is the sum of all masses which lay on the foundation level 

which can be set in the Others tab of seismic load. 

 
It is uninteresting from the calculation point of view that effective masses are 

compared to the total or the reduced mass because these values are given in per- 

centage and only gives information about which mode shape is the fundamental 

or which shapes are dominant in a given direction. 

 

1.1.6.3.3 Combination rule, rotation and second order effects 

According to EC8 4.3.3.5, the combination rule of x', y' and maybe Z direction 

effects, namely the seismic calculation of final results (Seismic max.), can be se- 

lected from the following two possibilities: 

 
The first rule which is called SRSS is implemented 

to all the other codes than EC8 and NS3491-12 and 

there is no possibility for rule selection. 
 

 
 
 
 
 

Torsional effect 

According to EC8 4.3.2 the program gives possibility to take into account the 

accidental mass distribution of the structure by the calculation of the torsional 

effect. This means that from the horizontal seismic forces a Z directional torsio- 

nal moment can be calculated according to EC8 4.3.3.3.3 (EC8 4.17 equation) 

as follows: 
 

Mai = eai Fi 

where:   Mai is the torsional moment applied at the mi point about the verti- 

cal axis, 

eai is the accidental eccentricity of mass i in accordance with ex- 

pression (EC8 4.3 formulas) for all relevant directions: 

eai = ± 0,05 Li 
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Li is the floor-dimension perpendicular to the direction of seismic 

action (Lx',i or Ly',i), 

Fi is the horizontal force acting on the place of mi in x' or y' direc- 

tion, when static method is used. In the modal analysis, this force is 

calculated, selecting the mode shape which gives the largest effecti- 

ve mass (fundamental shape). Using this mode shape this force is 

calculated according to static, mode shape. So, the total mass and 

not the effective mass of the structure is taken into account which 

belongs to this fundamental mode shape. 

 
The explanation of the floor-dimension (Lx',i and Ly',i) on the ith storey: 

 

 
 

Remarks: 

• To calculate the torsional effect, storey(s) should be defined. 

• The accidental eccentricity of the masses which are not laid on the storey 
will be considered on the nearest storey’s eccentricity. 

 
It was seen that the influence of uncertainties of mass position was modeled by 

the rotation effect. According to our experiment using the FE method, when a 

plate, a wall and beams are divided into several elements the accidental torsional 

effect is not reasonable. 
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Second-order effects (P-∆ effects) 

Only EC8 gives a possibility to calculate the second order effect which is done 

according to 4.4.2.2(2). The second order effect is ignored if the following con- 

dition is fulfilled in all storeys and all horizontal directions: 

θ =
Ptotdr

Vtoth
≤ 0.10 

where:   θ is the interstorey drift sensitivity coefficient, 

Ptot is the total gravity load at and above the storey considered in 

the seismic design situation. 

 
Remark: This total gravity load is calculated back from the nodal masses. 

 

dr is the design interstorey drift, evaluated as the difference of the 

average lateral displacements ds (see Displacement calculation) at 

the top and bottom of the storey under consideration and calculated 

in accordance with EC8 4.3.4, 
 

Vtot is the total seismic storey shear force, 

h is the interstorey height. 
 

If 0,1 < θ ≤ 0,2, the second order effect is taken 

into account by multiplying the rele- vant 

seismic action effects (the internal and reaction 

forces) by a factor equal to 

1/(1-θ). 
 

According to EC8 4.4.2.2(4)P the 

θ coefficient shall not exceed 0,3. When 

θ >0.3, FEM-Design sends a warning mes- 
sage and continues the calculation using 

θ = 0,0. 
 

The 0,2-0,3 interval is missing in EC8. In 

this case FEM-Design sends a warning 

message and continues the calculation 

using calculated θ. 
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Remark:    To calculate the second order effect, storey(s) should be defined. 

 

1.1.6.3.4 Displacement calculation 

The displacement calculation is made according to EC8 4.3.4 using the follo- 

wing formula: 
 

ds = qd de 

where ds is the displacement of a point of the structural system induced by 

the design seismic action, 
 

qd is the displacement behavior factor, assumed equal to q unless 

otherwise specified, 
 

de is the displacement of the same point of the structural system, as 

determined by a linear analysis based on the design response spec- 

trum. 

 
FEM-Design uses the above formula only to calculate the summarized and 

combined the so called final results displacements. The displacements obtained 

from the single shapes and torsional effects won’t be modified. 
 

 

1.1.6.4 The results of seismic calculation 

The seismic results are very similar to statical results with some more items as 

follow: equivalent seismic forces and base shear force. The results shown sepa- 

rately from mode shapes, torsional effects, sum of the directions (Sum, x'…) 

and the final results (Seismic max.). Desired results can be selected from the re- 

sult dialog as it is shown below. Among the equivalent load results not only the 

nodal forces can be seen but also the base shear force, and in case of torsional 

effect the total torsional moment as well. 
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Remarks: Because of the summation rule, the summarized values by direction 

and the full combinations give only positive values, namely these 

results means the maximum envelope. 
 

Because of the summation rule, none of the displacement compo- 

nents in a node and none of the member’s internal forces are not si- 

multaneous. 
 

 

1.1.6.5 Summation of static and seismic effects 

The seismic effect’s results can be considered together with static effects in two 

ways: 

Seismic forces applied as real static forces in load cases, 
 

The final results can be combined with a static load combination or 

taking into account in load groups. 

 

1.1.6.5.1 Seismic loads in static load cases 

Horizontal seismic forces and torsional effects which where calculated using the 

static method according to EC8 or NS3491-12 additionally can be added to the 

static load cases. However it is recommended to have the seismic forces in sepa- 

rate load case(s) in order not to mix up them with the normal static loads. 
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In the static calculations, load cases 

which contain seismic forces beha- 

ve like the other normal static for- 

ces. Consequently they can be 

inserted in load combinations and 

load groups. If they are inserted in 

the load combinations then they 

can take part in the imperfection 

and stability analysis. Of course 

there is no possibility to convert the 

masses from these load cases. As it can be seen in the table above, these effect 

can be taken into account by positive or negative sign as well, because the 

seismic effect means vibration between +/- extreme values, but the results are 

shown only in positive direction for the sake of simplicity. As it is shown above 

all the seismic possible cases can be found in the list but only those cases are va- 

lid which were calculated in seismic calculation. The calculated static loads 

from seismic effect can be found among the seismic results in the Equivalent 

loads. 

 

1.1.6.5.2 Final results of seismic effect (Seismic max.) 

in load combination 

Final results of seismic effect (Seismic max.) always obtained from the total 

summation of all components. These results which actually means extreme +/- 

values, can be added to a load combination as a special load case with arbitrary 

factor and it can be applied in all codes. 
 

 
 

The combination of the Seismic max. and the other static loads results is calcu- 

lated in a special way. 

 
Because the results of the seismic effect are always positive and individual com- 

ponents (e.g. N, My and Mz internal forces in bar) are not simultaneous 

FEM-Design takes action as follow: 
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All components of the seismic results are added to the components of static re- 

sults with the sign of static component. 

 

1.1.6.5.3 Final results of seismic effect (Seismic max.) 

in load groups 

Final results of seismic effect (Seismic max.) can be applied in load groups in 

all codes. Using EC8 and NS3491-12 program give possibility to have Seismic 

load type beside Permanet, Temporary and Accidental load type. In all other 

codes it is recommended to apply the Seismic load type in the Accidenal load 

type. The final results of seismic effect take part with +/- sign automatically in 

the load group combination. 
 

 
 
1.1.6.6  Useful tips, which method to use? 

To answer this question is hard even for experienced engineers. However some 

basic concept can be formulated: 
 

Before any decision, always run the Eigenfrequencies calculation. From 

this results you will experience how the structure behaves in aspect of 

dynamics, 
 

Always check the effective masses, if you calculate the structure for 

seismic effect in the first occasion or make changes in the geometry or in 

the mass distribution, 
 

If you see that the effective masses shows larger value than 100% com- 

pare them to the Total mass and not to the Reduced mass, 
 

If the sum of the selected effective masses is less than the prescribed mi- 

nimum (in EC8 this is 90%), calculate more mode shape, 
 

If the sum of effective masses in case of large number mode shapes do- 

esn’t approach to the prescribed value use the static, linear shape or sta- 

tic, mode shape if the code allow, 
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If the building has large importance or it has special geometry try to app- 

ly the modal analysis, 
 

If the building is not too high, any of the static methods will give reliable 

results avoiding longer run time calculation in eigenfrequenc, 
 

It is not always necessary to analyze the 3D model in all directions, so- 

metimes one or two planar model is enough. 
 

 

1.1.7 Non-linear calculation 
 

 

1.1.7.1 Uplift calculation 

In the Wall and Plate modules of FEM-Design there 

is a possibility to define point, line and surface sup- 

ports resisting only compression. This is a problem 

with material non-linearity which can be solved with 

the iterative method. In this case the relationship bet- 

ween reaction forces and displacements can be inter- 

preted by the following diagram. 

 
The solution implemented in FEM-Design is very simple: 

 
In the first step, when supports also resist tension, it is checked if tension appea- 

red in any support. If yes, and the support is defined to resist only compression, 

then the linear static analysis is repeated with setting the stiffness values in the 

tensioned elements to a very small value. We repeat this procedure until there is 

no tensioned support any more. 

 
If the user defines this kind of supports, he has to be aware of the direction (local 

coordinate system) of them, furthermore to the fact that the structure can beco- 

me kinematically undetermined. 
 

 

1.1.7.2 Crack analysis in FEM-Design Plate 

In FEM-Design a crack analysis technique is applied, where an iteration mecha- 

nism is calculating the effect of the cracks. 
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As the crack analysis is a non-linear calculation the principle of superposition is 

not true. By this fact the crack analysis is not applicable for load groups and the 

calculation has to be executed for every single combination. 

 
Generally the iteration is loading the structure in load steps, and modifies the 

stiffness of it in every step as more and more cracks occur during the loading 

process. The stiffness of the plate will be decreased only in the direction that is 

perpendicular to the crack lines, in the direction of the crack lines the stiffness 

remains the same as for the unracked state. The key of the calculation is the way 

the crack direction is calculated in a certain point. Dr. Ferenc Németh from the 

Technical University of Budapest has invented a method for this which is based 

on experiments. The cracked stiffness calculation is based on a conventional 

cross section modulus calculation of the second crack state which is combined 

with a Eurocode like crack distribution calculation (to consider the effect of un- 

cracked parts of the plate between two cracks). 

 
The calculation for one combination is performed in the following steps: 

• Loading the structure with the loads of the combination and performing a 
linear calculation of the internal forces. 

• Calculating the moment that cause crack on the structure in every points 

of the plate. This value is calculated by the tensional strength (limit 

stress) of the plate’s concrete material, the reinforcements are not taken 

into account at this point. 

• Searching for the place where the ratio of the crack moment and the actu- 

al (linear) moment has the smallest value. This value will describe the in- 

itial level of the load for the iteration. The size of a load step is calculated 

by user defined values. 

• In the first step the initial load acts and is then increased by the calculated 
load steps. 

• In every step is calculated weather the plate is cracked or not in a certain 

point (comparing the smallest principal moment to the crack moment of 

the plate). If the plate is cracked the direction of the crack is calculated 

and the stiffness of the cracked section. The element where the crack oc- 

cures then will have reduced stiffness. In the next load step it will change 

the behaviour of the plate as the crack does in the real structure. 
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• When the full load is applied on the structure the calculation is continued 

with full load level to consider cracks occurring in the last load step and 

to have a stable result. This phase is called final iteration. The final itera- 

tion is finished when the differences of the sum of the movements are 

less than a certain error percentage between two steps. The initial error 

percentage is 1% compared to the previous step, but this value could be 

adjusted. 

 
Notes: 

• It is possible that the plate is cracked in two direction in the same side. 

This is the case when the largest as well as the smallest principal value is 

over the crack limit. In this case the stiffness of the plate will be decrea- 

sed in both directions (parallel and perpendicular to the crack line). 

• It also can happen that the plate is cracked on both sides of it, but in this 

case the crack lines are nearly perpendicular to each other (depends on 

the reinforcement parameters). 

• During the calculations the direction of the cracks and the stiffness of the 

cracked parts are recalculated in every step. This is because the cracks 

makes changes in the behaviour of the structure, and depending on this 

the moment distribution is changed continuously along the structure. By 

numerical reasons the newly calculated directions and stiffnesses are not 

applied immediately with their full value but an intermediate value is 

used between the previous and the newly calculated values. This well 

known technique makes the calculation longer but the chance of success 

is increased. This technique is one reason why a final iteration is needed. 

• As the numerical techniques are mandatory to get correct results and the- 

se techniques are affected by the structural conditions and by user defi- 

ned values the user should be warned that a certain load step and final 

error value which is good for one structure perhaps is not suited for an- 

other structure. Smaller load steps means generally more accurate results, 

but the price is longer calculation time. 

• The crack direction calculation is based on the least remaining moments 

method. This method suppose that the crack direction will be the same as 

the crack when the capacity of the plate is reached. In every investigated 

point the moments are increased virtually (multiplied with a certain va- 
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lue) until the yield state is reached. The method of Ferenc Németh can 

describe the crack line direction on this level. 

• The stiffnesses of the cracked sections can be described in the directions 

of the reinforcements but the cracks occur in any direction. To calculate 

the stiffness perpendicular to the crack lines an average calculation met- 

hod invented by Dr. Ferenc Németh is used. The technique is based on 

experiments. 

• By the limitation of the finite element method the internal force distribu- 

tion will not be as smooth as can be seen for un-cracked structures, there 

would be small peaks on the border of two elements that have different 

crack direction and/or stiffness which is a normal state during crack 

analysis. 
 
 

1.1.8 Finite elements 
 

 

1.1.8.1 2D plate 

The 2D plate element has almost the same properties as the 3D plane shell ele- 

ment with one important difference: it is capable only of calculation of bending 

effects. The following section contains only the differences. 

 
The element is planar, the plane of the structure is the XY plane, its loads are 

perpendicular to its plane. It is capable of calculation of bending and torsional 

moments and cross-directional shear forces. Degree of freedom of nodes are 3, 

w is the displacement in Z direction, φx and φy are rotation around X and Y axis, 

respectively. Interpolation of the displacement function is quadratic. The ele- 

ment with 8 nodes is wellknown in the literature as serendipity element. 

 
At definition of bedding (surface supports) it is possible to set them to resist 

only pressure (see non-linear calculation). 
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Material of the plate is orthotropic, relationship between strains and stresses are 

as follows: 
 

εr 1 ⁄ Er  –vrs ⁄ Er 

εs 1 ⁄ Es 

0 0 0 0 σr 

0 0 0 0 σs 

γrs     = 1 ⁄ Grs 0 0 0 τrs 

γrz 1 ⁄ Grz 0 0 τrz 

γsz 

wz 

1 ⁄ Gsz 0 

1 ⁄ k 

τsz 

pz 

 

Since the matrix of the material constants are symmetrical: 

vrs / vsr = Er / Es 

The k constant in the last row is the Winkler-type bedding factor. 

 
The element is loadable in the same way as the 3D plane shell element, accor- 

ding to common sense. 

 
Results: 

• w, φx, φy   displacement and rotations of nodes, 

• Mx, My specific bending moments in the global X-Y coordinate sys- 
tem, 

• Mxy torsional moment, 

• Tx, Ty cross directional shear forces, 

• Fz bedding (support) surface distributed forces. 

 
The extremes of the stresses can be calculated from the above mentioned inter- 

nal forces according to the following relationships (t is the thickness of the pla- 

te): 

σx = 6 Mx / t
2, σy = 6 My / t

2
 

τxz = 3 Tx / (2t), τyz = 3 Ty / (2t), τxy = 6 Mxy / t
2
 

 

1.1.8.2 2D wall 

The 2D wall element, (also called disk element) has almost the same properties 

as the 3D plane shell element but it is capable only of calculation of the mem- 

brane effect. The following section contains only the differences. 
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The element is planar, the plane of the structure is the XY plane, its loads act in 

its plane, too. Degree of freedom of the nodes is 2: u and v, displacements in the 

X and Y directions. Interpolation of the displacement function is quadratic. The 

element with 8 nodes is wellknown in the literature as serendipity element. 

The element is capable of calculation on plane stress or plane strain state. 

Material of the plate is orthotropic, relationship between strains and stresses are 

as follows: 
In case of plane stress state: 

[

εy

εs

γys

] =

[
 
 
 
 

1

Ey
−

νs

Ey
0

1

Es
0

1

Gys]
 
 
 
 

[

σy

σs

τys

] , and 

𝜎𝑧 = 0,               𝜀𝑧 = −
𝜀𝑟

ν𝑟𝑧

−
𝜀𝑠

ν𝑠𝑧

 

In case of plane strain state: 

[

εr

εs

γrs

] =

[
 
 
 
 
 
 
1

Ey

−
Ezνrzνyz

Ey
2

−
νys

Ey

−
Ezνyzνsz

EyEs

0

1

Es

−
Ezνszνsz

Ey
2

0

1

Gys]
 
 
 
 
 
 

[

σr

σs

τrs

] 

Results: 

The result of the calculation for a given element in the nodes are as follows: 

• σx, σy   normal stresses in the X-Y plane, 
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• σζ normal stress in the Z direction (only in case of plane strain state) 

• τxy shear stress, 

• σ1,σ2,σ3: principal stresses, 

• σVM the so called von Mises stress, which is calculated according to 
the following form: 

 

σvm  = ((σ3 – σ1 )
2 + (σ3 – σ2 )

2 + (σ1 – σ2 )
2 ) ⁄ 2 

 

The internal forces in the nodes of the connected 

elements are averaged over every region one by 

one. 

 
The sign rule of the internal forces: 

 

1.1.8.3 2D beam 

The 2D beam element is a prismatic element with 

two nodes and straight axis. It is capable of calculation of beam-grids lying in 

the X-Y plane, loaded in Z direction, and in case of bent 2D slab structures for 

modelling of stiffening ribs and lintels. The applied (Timoshenkó-type) bar ele- 

ment has three degrees of freedom: w, the displacement in the global Z direction 

and φX, φY rotations. The shear deformations are taken into consideration simi- 

larly to the 3D element. Interpolation of the displacement function is implemen- 

ted by polinomes of the third degree. 

 
In the case of bent slab structures the element can be eccentric in the global Z di- 

rection, as it is represented in the following picture. 

 
In this case the bar element behaves like an 

element with inertia increased by the Stei- 

ner part, which gives correct results for the 

displacement of the slab structure from 

engineering point of view. However in this 

case the internal forces of the elements are calculated as a 3D bar element. 

 
The possible loads and the results are appropriately the same as in case of the 3D 

beam element. 



42 Applied Theory and Design - Analysis calculations  

 

1.1.8.4 3D shell 

The 3D slab element is an isoparametrical, thick shell element with eight or six 

nodes, which can be used for modelling of spatial structures containing parts 

with plane centre surfaces. The element is capable of calculation of membrane 

(in-plane) and bending (perpendicular to plane) displacements and matching 

same time (engaged) internal forces. The number of degree of freedom is six per 

node: u, v, w displacements and φX, φY, φZ rotations, referring to the X, Y, Z di- 

rections of the global coordinate system. Interpolation of displacement functions 

is implemented by second order functions. In all elements beside the eight nodes 

on the perimeter there is a ninth node in the centre of the element, which is invi- 

sible to the user. The interpolation function belonging to the ninth node is the so 

called bubble-function, which is zero on the perimeter of the element. It only has 

a role in the elimination of numerical problems during the calculations (shear 

locking, membrane locking). Applying the thick shell theory makes it possible 

to calculate the shear effect more accurately perpendicular to the plane. 

 
As a result of application of shell theory (or more accurately Kirchoff hypothe- 

sis referring to displacements) the rotation stiffness of the structure perpendicu- 

lar to the centre plane is zero. It only has effect if the analyzed structure is a 

plane slab. In this case the rotation around the normal direction of the plate has 

to be fixed in at least one point additional to the statically determined support of 

the slab. It is unnecessary, if the structure it self fixes this rotation, i.e. beams or 

columns connected to the slab, or the structure contains more connected slabs 

with not parallel centre plane. If the whole structure is in one plane, it is more 

practical to use wall or plane plate element, because it eliminates the above 

mentioned problem, moreover the number of degree of freedom of the structure 

is much lesser at the same element division and calculation accuracy. The thick- 

ness of the element can vary linearly. The elastic surface bedding is taken into 

consideration according to the linear Winkler model, which also allows the bed- 

ding factor to vary linearly. 

 
Application of the element requires the usage of three different Descartes coor- 

dinate systems. Coordinates of nodes, certain type of loads and node displace- 

ments among the results are defined in the global (structural) X, Y, Z system. 

The calculated internal forces can be defined in the local (region) x, y, z system, 

where z is the normal direction of the region and finally the r, s, z system defi- 

nes the main directions of orthotropy. 
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In case of orthotropic material the r, s axes lying in the centre plane define the 

material main directions. In this system the relationship between deformations 

and stresses is the following (Hook law): 
 

[
 
 
 
 
𝜎𝑟

𝜎𝑠

𝜏𝑟𝑠

𝜏𝑟𝑧

𝜏𝑡𝑧]
 
 
 
 

=

[
 
 
 
 
𝐷11 𝐷12 0 0 0
𝐷21 𝐷12 0 0 0

𝐷3 0 0

𝐷4 0

𝐷5]
 
 
 
 

[
 
 
 
 
𝜀𝑟

𝜀𝑠

𝛾𝑟𝑠

𝛾𝑟𝑧

𝛾𝑡𝑧]
 
 
 
 

 

where, since  

D11 = Er/(1 − υrs υsr) = Er/(1 − υsr
2  Es/Er ), D22 = Es/(1 − υsr

2  Es/Er) 

D12 = D21 = υsrEs/(1 − υsr
2 Es/Er), 

D3 = Grs, D4 = Grz, D5 = Gsz 

The thermal expansions in direction of r, s axes developed by T temperature: 

[
εr

εs
] = [

αr 0
0 αr

] [
1
1
] T 

In case of isotropic material two material constants, E and u define the elastic 

material property:  

D11 = D22 = E/(1 − υ2), D12 = D21 = υE/(1 − υ2),  
D3 = D4 = D5 = E/(2 + 2υ) = G, and 

αr = αs = α 

 
 

Loads: 

• Gravity (dead) loads, in the downward vertical direction, by default the 
global -Z, 

• Forces and moments acting on one point, in any point of the structure, 

• Linearly varying line load, 

• Linearly varying surface load (pressure), 

• Thermal load linearly varying align the surface and align the element 
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thickness, 

• Support motions at the rigid or elastic surface and point supports. 

 
Results: 

• Displacements and rotations in the global (X, Y, Z) coordinate system, 

• Eight internal force and five stress coordinates in the local (x, y, z) coor- 

dinate system. 
 

 
 

Calculated internal forces (force and moment referring to unit length): 

• Mx, My bending moments, 

• Mxy torsional moment, 

• Tx, Ty cross directional shear force, 

• Nx, Ny, Nxy membrane forces. 

 
Variation of stress coordinates along the thickness can be calculated from the in- 

ternal forces according to the following relationships: 

σx =
Nx

t
−

Mx

I1
z, σy =

Ny

t
−

My

I1
z, τxy =

Nxy

t
−

Mxy

I1
z, 

τxz =
Tx

2I1
(
t2

4
− z2) , τyz =

Ty

2I1
(
t2

4
− z2), 

 

I1 =
t3

12
, −

t

2
≤ z ≤

t

2
 

where t is the element thickness. 
 

 

1.1.8.5 3D beam 

The beam element is an element with two nodes which has a straight axis. It is 

usable for analysis of spatial trusses and structures containing bars among oth- 

ers. The number of degree of freedom is six per node: u, v, w displacements and 

φX, φY, φZ rotations, referring to the X, Y, Z directions of the global coordinate 

system. The applied (Timoshenko) bar theory also makes it possible to take into 
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consideration the shear deformations. Interpolation of displacement and rotation 

functions are implemented by the third order polynomials. 

 
Application of the element requires the usage of four different Descartes coordi- 

nate systems. Coordinates of nodes, certain type of loads and node displace- 

ments among the results are defined in the global (structural) X, Y, Z system. 

The x, y, z local coordinate system fits to the node, where x is parallel with the 

axis of the bar element, and y, z define the plane of the cross-section. The calcu- 

lated internal forces can be defined in the x', y', z' axes, origined from the centre 

of gravity, which are parallel with x, y, z, respectively. In the plane of the cross- 

section x and h axes, originated from the centre of gravity, define the cross-sec- 

tional main directions. 

 
Cross-section of the element is arbitrary but its size and orientation is constant 

along one element. Since the node (connection point) and the centre of gravity 

can be different in a cross-section, this element is capable of analysis of structu- 

res containing bars with eccentric connections. 
 

A typical structure for this case is a ribbed slab. 

In this case the node of the rib (bar) element is 

on the centre plane of the slab but the centre of 

gravity of the bar can differ from it. 
 

Loads: 

• Gravity (dead) loads, in the downward 
vertical direction, by default the global-Z, 

• Forces and moments acting on one point, 
in any point of the structure, 

• Linearly varying line load, 

• Thermal load linearly varying align the length and align the cross-sec- 

tion, 

• Support motions at the rigid or elastic point supports. 

 
Results: 

• Displacements and rotations in the global (X, Y, Z) coordinate system, 

• Six internal forces in the local (x', y', z') coordinate system, with its ori- 

gin in the centre of gravity, 

• My, Mz bending moments, 
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• Mx torsional moments, 

• Vy, Vz shear forces, 

• Nz normal force. 

 

1.1.8.6 3D solid 

 
These 3D elements are isoparametric solid elements with 4/10 nodes (Tetra), 

6/18 nodes (Wedge) or 8/27 nodes (Brick), which can be used for modeling of 

spatial structure. The number of degree of freedom is three per node: u, v, w 

displacements. Interpolation of displacement functions is implemented by linear 

(4/6/8 node) or second-order (10/18/27 node) function (standard/fine). 

The numerical integration method is performed in a full manner for element 

stiffness. The element node numbers and the integration schemes are the 

following: 

 
4 node tetra element, parametric coordinate system, node numbering and 

integration point (1 pc) 

 
10 node tetra element, parametric coordinate system, node numbering and 

integration points (15 pcs) 
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6 node wedge element, parametric coordinate system, node numbering and 

integration points (9 pcs) 

 
18 node wedge element, parametric coordinate system, node numbering and 

integration points (18 pcs) 
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8 node brick element, parametric coordinate system, node numbering and 

integration points (8 pcs) 

 
27 node brick, parametric coordinate system, node numbering and integration 

points (27 pcs) 

Application of the element requires the usage of two different Cartesian 

coordinate systems.  

• Coordinates of nodes, certain type of loads and nodal displacements among the 

results are defined in the global (structural) X, Y, Z system.  

• The x, y, z system defines the main directions of orthotropy. In this system the 

relationship between deformations and stresses is the following (based on 

Hooke’s law): 

 
),21(A yxxyxzzxzyyzxyzxyz  
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Loads: 

• Gravity (dead) loads, in the downward vertical direction, by default the global -

Z 
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• Forces acting on one point, in any point of the structure, in global system 

• Linearly varying line load, in global system 

• Linearly varying surface load (pressure), in global system 

• Thermal load linearly varying align the elements 

• Shrinkage load, in x, y, z direction 

• Support motions at the rigid or elastic surface and point supports. 

 

Results: 
• Displacements in the global (X, Y, Z) coordinate system 

• Six stress components in the global (X, Y, Z) coordinate system. 

 
1.1.8.7 Point support 

The element is a point-like elastic support element with 6 degrees of freedom, 

meant in local coordinate system. In the general case it can be defined by 3-3 

stiffnesses against motions and rotations. It is possible to make the element to 

resist only compression (see non-linear calculation). In case of infinitely rigid 

supports the program modifies the stiffness coefficients in order to avoid nume- 

rical problems and substitutes them with proper values for the calculation. 
 

The element can be loaded by support motion but only if it resists both tension 

and compression. The results of the elements are line reaction forces and mo- 

ments in the local coordinate system of the element. 

 
The reaction forces are positive in case of extension of the spring, and negative 

at compression. 
 

 

1.1.8.8 Line support 

Spatial, line aligned, elastic support element with 6 degrees of freedom per no- 

de. 

 
The element is isoparametric, has 3 nodes in order to fit the surface elements, al- 

ways meant in local coordinate system. The degrees of freedom for a node of the 

element: u, v, w, φx, φy, φz. There is possibility to make the element resist only 

tension (see non-linear calculation). In case of infinitely rigid supports the pro- 

gram modifies the stiffness coefficients in order to avoid numerical problems 

and substitutes them with proper values for the calculation. The 3D element can 

be defined by 3-3 stiffnesses against motion and rotation which are constant 

along the given line. In the 2D modules (i.e. Plate, Wall) only the appropriate 

stiffnesses can be defined and only they are considered during the calculation. 
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For example, in the Wall module only stiffnesses against motion in x and y di- 

rections can be defined. 

 
The element can be loaded by support motion 

but only if it resists both tension and compres- 

sion. The results of the elements are line reac- 

tion forces and moments distributed along the 

length of the element according to quadratic 

function. 

 
They are always meant in the local coordinate 

system of the element. The reaction forces are positive in case of extension of 

the spring, and negative at compression. 
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1.1.9 Finite element mesh 
 

 

1.1.9.1 Generate 

This sophisticated multi-phased mesh generating tool will consider the defined 

minimum division numbers and the average element sizes and will generate the 

most balanced mesh. The tool generates a so-called unstructured mesh. After se- 

lecting the regions where the mesh will be generated, the tool splits the regions 

into sub-regions and performs the multi-phased mesh generation. 

 
The phases of mesh generation are: 

• Defining the vertices of the elements. 

• Creating a triangle mesh using the vertices. 

• Converting the triangle mesh to mixed quadrate-triangle mesh. 

• Optimizing the coordinates of the nodes in the mesh (smoothing the mesh). 

• Setting the middle points of the element sides. 

 
Defining the vertices of the elements 

The vertices will be evenly placed to a distance of the average element size from 

each other along the lines, which are parallel with the longest edge of the sub-re- 

gion and are at the average element size distance from each other. 

 
Creating a triangle mesh using the vertices 

The triangles are created using the well-known Delaunay triangulation techni- 

que which uses the Voronai domains. 

 
Converting the triangle mesh to mixed quadrate-triangle mesh 

The function used to convert the triangle mesh to a mixed quadrate-triangle 

mesh is capable of creating the mesh with the globally optimal shape. This in- 

volves the solving of a linear programming problem known in the mathematics 

as assignment problem. Our mathematicians have developed a new procedure to 

find the optimum for the linear programming problem. This problem is similar 

to the distribution method procedure. 
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Optimizing the co-ordinates of the nodes in the mesh (smoothing the mesh) 

The optimization of the mesh is based on Dr. István Kirchner’s new procedure, 

which was published in [10]. This procedure places the nodes of the triangle ele- 

ments in such a way, that the area of the triangles will be balanced. In achieving 

the most balanced area of the triangles an iteration technique is used. 

 
Setting the middle points of the element sides 

In the present version the sides of the elements are straight lines. Nodes are pla- 

ced in the middle of the element sides. 

 
The automatic mesh generator has some other unique and special automatic fea- 

ture. Some of the most important features are: 

• If the need arises the mesh will automatically be thicker around some local 

effects. This is solved by placing new nodes in the critical places. If the ge- 

nerator has found a place on the structure, where the mesh needs to be thick- 

er, in the third phase of the generation the number of the iterations will be 

greater than 1. If the required thickness couldn’t be achieved during the max- 

imal iterations, the user will be notified with a warning. In this case, the geo- 

metrical structure possibly has some serious geometrical anomalies. The 

mesh around the places, where the geometrical anomalies are present will be 

very dense. 

• If the calculated or user-set average element size is too big, than the genera- 

tor will automatically recalculate and reduce it with the statistical analysis of 

the current mesh. In this case the mesh generator will restart the first phase 

of the generation after finishing the second. It is possible for the generator to 

execute the reduction of element size as many times as it is needed. 

• During the mesh generation on the actual sub-region the generator takes into 

account the division number of the sub-region borders which belong to an- 

other sub-region. If the division number of a border, which belongs to an- 

other sub-region too is altered, the generator automatically regenerates the 

mesh on the other sub-region too. The visible sign of this automatic recalcu- 

lation is that in the progress window the original number of the total sub-re- 

gions increases. If the automatic recalculation of the sub-regions is needed 

too many times, it may suggest some serious geometrical and statical pro- 

blems on the structure. The critical places on the structure are marked by the 
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unusual density of the mesh. In order to minimise the number of the automa- 

tic recalculation the generator first resolves the sub-region with the smallest 

average element size and than proceeds in increase order. 
 

 

1.1.9.2 Refine 

This tool is used to increase the thickness of the balanced mesh generated auto- 

matically by the program. Using the dialog box the user can easily define where 

the mesh should be thicker. Because of numerical reasons it is needed to refine 

the mesh around the effects, which are in a point or along a line. These effects 

are for example point and line supports and loads, the places where there is a 

drastically change in the value of a surface load or the borders of two regions 

which have different material. It can be useful to refine the mesh along the free 

edges of the structure too. 

 
The Refine function basically consists of two phases. In the first phase the user 

selects all the elements, which are to be divided. The second phase automatical- 

ly splits the selected elements in the suitable way. In this second phase the pro- 

gram uses the principles publicised by Dr. István Kirchner in [11]. The dialog 

box makes the selection of the elements comfortable for the user. 
 

 

1.1.9.3 Optimal rebuild 

This option rebuilds the mesh according to the global optimum. The nodes are 

not moved during the process. In the first phase of the process the program 

builds a triangle mesh using the principles of Delaunay triangulation technique 

based on the Voronai domains. The second phase converts these triangles to qua- 

drates corresponding to the global optimum for the selected regions. During the 

converting process the program uses the unique function, which is capable of 

creating the global optimum of the mesh. This involves the solving of a linear 

programming problem known in the mathematics as assignment problem. Our 

mathematicians have developed a new procedure to find the optimum for the li- 

near programming problem. This problem is similar to the distribution method 

procedure. 
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1.1.9.4 Smooth 

This option calculates the optimal coordinates for the corner nodes of the ele- 

ments. The optimization of the mesh is based on Dr. István Kirchner’s new pro- 

cedure, which was published in [10]. This procedure places the nodes of the 

triangle elements in such a way, that the area of the triangles will be balanced. In 

achieving the most balanced area of the triangles an iteration technique is used. 
 

 

1.1.10 Load group calculations 

The user can define a number of load groups, which can be assigned as perma- 

nent, stress, temporary, seismic or accidental. Every load group contains one or 

more earlier defined load cases. Depending on the active code, different 

partial safety factors could be defined. The program will then automatically 

combine and calculate every possible load combination in order to find the 

most unfavourable load position for the variable loads. 

 
Load groups defined as permanent will be present in all load combinations and 

if a load group contains more then one load case they will never be simultaneou- 

sly present. 

 
Note: As the calculation requires the principal of superposition when load 

groups are used, it is not possible to use the option Consider cracking as this 

requires a non-linear calculation. 

 
The calculation method vary from standard to standard (the Code independent 

standard doesn’t support load group calculations): 
 

 

1.1.10.1 EuroCode (EC2) 

Considering all defined load groups the load combinations will be created in the 

following way: 

 

1.1.10.1.1 Ultimate limit state 

Design situations with only one variable action Qk1 

𝑆𝑑 = {
Σ γ GK 

+  γQ 
Qk, i

Σ ξγ GK 
+  γQ 

Qk, i
 

Design situations with two or more variable actions Qki 
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𝑆𝑑 = {
Σ γ GK 

+  γQ 
Qk, i

Σ ξγ GK 
+  γQΨ 

Qk, i
 

 

 

1.1.10.1.2 Serviceability limit 

state 

Design situations with only one variable action 

Qk1 

Sd = Σ GK + Qk,1 

Design situations with two or more variable actions 

Qki 

Sd = Σ GK + Ψ Σ Qk,i 

In this state the deformations and crack widths will be 

calculated. 

 
In the example below the way of producing load combinations is exemplified 

for a plate but the method used applies also for walls. 

 
Example: 

A plate with four parts: 

 
The load case StruDL_P r5and SoilDL_P acts on the entire plate while the 

variable loads Q1_T and Q2_T acts on the respective parts of the plate. 

 
We set the Combination method to “EC0 6.10.a,b”.  

 

We define the first two load groups with the name G-Struct and G-Soil. It 

will contain the load case StruDL_P and SoilDL_P, which are defined as 

permanent with favourable safety factor 1.00, unfavourable safety factor set to 

1,35 and Xi factor to 0.9. Then we define two load groups LG1 and LG2 

where we put load cases Q1_T and Q2_T respectively. These groups are all 

defined as temporary with the safety factor set to 1,5, the same time factor 

(Psi 0) to 0,5 and the other factors (Psi 1 and Psi 2) are 0.0. 

 
The program will now create and analyse the following 27 load 

combinations: 
 

1. StruDL_P + SoilDL_P, 

2. StruDL_P + SoilDL_P + 1,50 ∙ Q2_T, 
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3. StruDL_P + SoilDL_P + 1,50 ∙ Q1_T, 

4. StruDL_P + SoilDL_P + 1,50 ∙ 0,50 ∙ Q1_T + 1,50 ∙ 0,50 ∙ Q2_T 

5. StruDL_P + 1,35 ∙ SoilDL_P + 1,50 ∙ 0,50 ∙ Q1_T + 1,50 ∙ 0,50 ∙ Q2_T 

6. 1,35 ∙ StruDL_P + SoilDL_P + 1,50 ∙ 0,50 ∙ Q1_T + 1,50 ∙ 0,50 ∙ Q2_T 

7. 1,35 ∙ StruDL_P + 1,35 ∙ SoilDL_P + 1,50 ∙ 0,50 ∙ Q1_T + 1,50 ∙ 0,50 ∙ 
Q2_T 

8. 0,90 ∙ StruDL_P + 0,90 ∙ SoilDL_P 

9. 0,90 ∙ StruDL_P + 0,90 ∙ SoilDL_P + 1,50 ∙ Q2_T 

10. 0,90 ∙ StruDL_P + 0,90 ∙ SoilDL_P + 1,50 ∙ Q1_T 

11. 0,90 ∙ StruDL_P + 0,90 ∙ SoilDL_P + 1,50 ∙ Q1_T + 1,50 ∙ 0,50 ∙ Q2_T 

12. 0,90∙ StruDL_P + 0,90∙ ∙SoilDL_P + 1,50∙0,50∙Q1_T + 1,50∙Q2_T 

13. 0,90∙ StruDL_P + 0,90∙1,35∙SoilDL_P 

14. 0,90∙ StruDL_P + 0,90∙1,35∙SoilDL_P + 1,50∙Q2_T 

15. 0,90∙ StruDL_P + 0,90∙1,35∙SoilDL_P + 1,50∙Q1_T 

16. 0,90∙ StruDL_P + 0,90∙1,35∙SoilDL_P + 1,50∙Q1_T + 1,50∙0,50∙Q2_T 

17. 0,90∙ StruDL_P + 0,90∙1,35∙SoilDL_P + 1,50∙0,50∙Q1_T + 1,50∙Q2_T 

18. 0,90∙1,35∙StruDL_P + 0,90∙ SoilDL_P 

19. 0,90∙1,35∙StruDL_P + 0,90∙ SoilDL_P + 1,50∙Q2_T 

20. 0,90∙1,35∙StruDL_P + 0,90∙ SoilDL_P + 1,50∙Q1_T 

21. 0,90∙1,35∙StruDL_P + 0,90∙ SoilDL_P + 1,50∙Q1_T + 1,50∙0,50∙Q2_T 

22. 0,90∙1,35∙StruDL_P + 0,90∙ SoilDL_P + 1,50∙0,50∙Q1_T + 1,50∙Q2_T 

23. 0,90∙1,35∙StruDL_P + 0,90∙1,35∙SoilDL_P 

24. 0,90∙1,35∙StruDL_P + 0,90∙1,35∙SoilDL_P + 1,50∙Q2_T 

25. 0,90∙1,35∙StruDL_P + 0,90∙1,35∙SoilDL_P + 1,50∙Q1_T 

26. 0,90∙1,35∙StruDL_P + 0,90∙1,35∙SoilDL_P + 1,50∙Q1_T + 1,50∙0,50∙Q2_T 

27. 0,90∙1,35∙StruDL_P + 0,90∙1,35∙SoilDL_P + 1,50∙0,50∙Q1_T + 1,50∙Q2_T 
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2 Design calculations 
 

 
 

2.1 Basics 
 

FEM-Design performs design calculations for reinforced concrete-, steel- and 

timber structures according to Eurocode. 
 

 

2.2 Concrete Design 
 

The following design considers EC2 (standard) and the National Annex (NA) 

for Denmark, Finland, Germany, Hungary, Norway, Sweden and United King- 

dom. 
 

 

2.2.1 Design forces 

The design forces are the forces that the reinforcements should be designed for 

in the reinforcement directions. The term design forces have meaning only in 

surface structures like plate, wall or 3D plate. In beam structures the design for- 

ces are equivalent to the internal forces. The necessary reinforcement calcula- 

tions are based on the design forces. 

 
The way of calculating the design forces is common in all modules and in all 

standards. 

 
In FEM-Design the design forces calculation is based on the mechanism of op- 

timal reinforcement calculation for skew reinforcements made by M.P. Niel- 

sen, Wood-Armer and Dr. Ferenc Németh, see [2]. The following description 

will show the way of calculation for moments but the way of the calculation is 

the same for normal forces too. Just substitute the m signs with n and you will 

have the calculation for normal forces. 

 
For the calculation of the design forces we have given: 

• ξ, η reinforcement directions, 

• α, β angle of global x direction and the ξ, η reinforcement directions, 
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• mx, my, mxy internal forces. 

 
The results will be the design moments: 

• mξ , mη 

 

In the first step we are taking a ξ-ϑ coordinate system 

and transform the internal forces into this system: 

 

 

mξ =
mx + my

2
+

mx − my

2
cos2α + mxysin2α 

mϑ =
mx + my

2
−

mx − my

2
cos2α − mxysin2α 

mξ = −
mx − my

2
sin2α + mxycos2α 

Now the design forces will be chosen from four basic cases called a), b), ξ) 

and η). The possible design moment pairs of the cases: 

a) case: 

 m̅ξ = mξ − mϑ

cosφ

1 + cosφ
+ mξϑ

1 − 2cosφ

sinφ
 

m̅η = mϑ

1

1 + cosφ
+ mξϑ

1

sinφ
 

b) case: 

m̅ξ = mξ + mϑ

cosφ

1 + cosφ
− mξϑ

1 + 2cosφ

sinφ
 

m̅η = mϑ

1

1 − cosφ
− mξϑ

1

sinφ
 

ξ) case: = – -----ξ---ϑ-- 

m̅ξ = mξ −
mξϑ

2

mϑ

 

mη = 0 

 

η) case: 
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mξ = 0 

m̅η =
mξmϑ − mξϑ

2

mξ(sinφ)2 + mϑ(cosφ)2 − mξϑsin2φ
 

From the four cases the one is invalid where: 

• the signs are different: mξ*mη < 0 

• the crack tensor invariant is less than the internal forces invariant:  

m∗ = m̅ξ + m̅η < mx + my = m1 + m2 

m∗′ = m̅ξ
′ + m̅η

′ < mx + my = m1 + m2 

The valid positive pair will be the design moment for bottom reinforcement; the 

valid negative pair will be the design moments for the top reinforcement (positi- 

ve means positive and zero values; negative means negative and zero values). 

 
So the result will be four values in a certain point: two moment values for each 

reinforcement directions. It can sound strange that the reinforcements are used 

for both positive and negative moment in one direction at the same time, but if 

we are looking at a plate where the mx is positive and the my is negative and the 

reinforcements have an angle of 45 degree to the x direction we could imagine 

that the bottom reinforcement bars make equilibrium to the mx and the top rein- 

forcement bars make equilibrium to the my. So a certain reinforcement direction 

takes positive and negative loads at the same time. 
 
 

2.2.2 Shrinkage as load action 

In the Plate and 3D Structure modules the shrinkage behaviour of reinforced 

concrete slabs can be taken into consideration as load action. The program add 

this movement effect (specific rotation) calculated from the formulas written be- 

low to the structure as invisible load (one load case must be defined as Shrinka- 

ge type, see User’s Guide [1]). 

 
Note: The shrinkage effect has to be used together with applied reinforcement. 
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The effect of the shrinkage for the surface reinforcement bars in one direction 

(here X) (it is also valid in other bar directions): 
 

 
 

The specific normal force causing the given shrinkage value (εcs [‰] at concrete 

materials) in the concrete zone of the section is (here in X direction): 

NX = Ec Ac εcs [kΝ/m] 

 
The position change of centre of gravity considering reinforcement bars (here 

X-direction; see dashed line): 

zs =
nSs

Ac + nAs

 

where:   n = Es / Ec and Ss is the statical moment of (here) X-directional bars 

around the Y axis of the calculation plane. 

 
The moment around the Y axis of the calculation plane from NX because of the 

position change of centre of gravity: 
 

MY = NX zs 

 
The specific rotation (curvature) from MY for 1 meter wide section: 

κY =
MY

EcIY
 

where:   IY = Ic,Y + n Is,Y - zs
2 (Ac + n As) 
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2.2.3 Design calculations for surface structures 
 

 

2.2.3.1 Ultimate limit state 
 

Main reinforcement 

The design of the slab is performed with respect to the design moments descri- 

bed in 2.2.1 above. 

 
In order to minimize cracking in the slab a good way is to reinforce according to 

the elastic moments which normally also leads to good reinforcement economy. 

 
The required bending reinforcement is designed according to EC2 3.1.7 where a 

rectangular stress distribution as shown below has been assumed. 

 

 

λ = 0,8 for  fck ≤ 50 MPa 

λ = 0,8 - (fck - 50)/400 for  50 < fck ≤ 90 MPa 

and: 

η = 1,0 for  fck ≤ 50 MPa 

η = 1,0 - (fck - 50)/200 for  50 < fck ≤ 90 MPa 

 
If the current moment is larger than the moment representing balanced design, 

compression reinforcement will be provided if allowed by the user otherwise an 

error message will be displayed. If the spacing regulations for the reinforcement 

are exceeded before adequate moment capacity can be reached a warning mes- 

sage will be displayed. 
 
 
 

Note, that the required bending reinforcement is at design level primary not af- 
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fected of the presence of user defined reinforcement. However, when user defi- 

ned applied reinforcement is selected the stiffness will be effected, which in 

most cases will influence the moment distribution and thus secondary the requi- 

red bending reinforcement. 
 

 

2.2.3.2 Shear capacity 

The shear capacity is calculated according to EC2 6.2.2 and 6.2.3 considering 

applied bending reinforcement when the option Checking has been selected, 

otherwise the required bending reinforcement according to ch. 2.2.3.1.1. The de- 

sign criteria for the shear capacity is: 
 

VSd < VRd1 

where:   VSd is the design shear force; 

VSd = Q, which is calculated as Q = (Tx
2 + Ty

2)
0.5

 

VRd is the shear capacity. 

If the section in which the shear force is acting has an angle with respect to the 

reinforcement directions the shear capacity is calculated as: 
 

VRd = (VRd_x
2 + VRd_y

2)1/2 

NAD Germany 

Values for τRd: 
 

Grundwerte der Schubspannung τRd 

(DAfStb-Ri., Tab. R4 [5.10]; die in EC2, Tab 4.8 angegebenen Werte τRd liegen auf der unsicheren Seite!) 

Betonfestigkeit- 

sklasse C 
12/15 16/20 20/25 25/30 30/37 35/45 40/50 45/55 50/60 

τRd in N/mm2
 0,20 0,22 0,24 0,26 0,28 0,30 0,31 0,32 0,33 

 
For German qualities B15-B55 the following applies: 

fctk0.05 = 0,25 βWN 
2/3

 

As shear check result is displayed missing capacity VSd - VRd1 > 0. When the op- 

tion Shear check has been selected a message is displayed at calculation if the 

shear capacity is not large enough. 
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2.2.3.3 Punching 

The punching capacity is calculated according to EC2 6.4.3 - 6.4.5. 

 
2.2.3.3.1 Checking 

Punching without shear reinforcement 

A concrete compression check on u0 is made according to 6.4.5 (6.53). 

A concrete shear check on u1  is made for a capacity calculated according to 

6.4.4 (6.47). 

 
Punching with shear reinforcement 

A concrete compression check on u0 is made according to 6.4.5 (6.53). 

Reinforcement is calculated with regard to critical perimeters u1, u2, ... unReinf ac- 

cording to 6.4.5 (6.52 ). 

(ui are control perimeters above the reinforced region, distance between 

them is ”Perimeter distance”, defined in the calculation parameter). 
 

A concrete shear check on uout is made for a capacity calculated according to 

6.4.4 (6.47) 

(uout is either the first perimeter that does not need reinforcement, or if it is 

not found, the perimeter that is k deff distance from the outer perimeter of the 

reinforcement). 

 
Warnings 

A warning message is shown, if reinforcement does not comply with the detai- 

ling rules in 9.4.3. 

 

2.2.3.3.2 Design 
 

1. Check, if reinforcement is needed at all, 
 

2. If reinforcement is needed, it is designed to satisfy the detailing rules in 

9.4.3, if possible, 
 

3. Design fails and a warning message is displayed if, 

uout is not found within 6 deff  distance from the column perimeter. 
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Comments, limitations 

- openings are not considered when control perimeters are generated. 

- the position of the column relative to the plate is considered only in the 

generation of control perimeter. It means, (user or program defined) rein- 

forcement may be partly out of the plate, but it won't affect the calcula- 

tion. 

- If ”Calculate β automatically” is set in the calcuation parameter, β is 

calculated according to equation 6.4.3 (6.39). 
 

 

2.2.3.4  Serviceability limit state 
 

Method of solution 

The program performs crack- and deflection control for all load combinations 

according to EC2 7.3 and 7.4. Two limiting conditions are assumed to exist for 

the calculations: Stadium I (the uncracked condition) and Stadium II (the fully 

cracked condition). 
 

Stadium I Uncracked condition 

If the user does not activate the option Cracked section analysis is, the calcula- 

tion will be performed with respect to the total stiffness of the slab. 
 

Stadium II Fully cracked condition 

If the option Cracked section analysis, is activated the program will consider 

the decrease in slab stiffness on behalf of cracking. This means an iterative cal- 

culation where the slab in the beginning is assumed to be uncracked when the 

section forces are calculated. Sections which are not loaded above the level 

which would cause the tensile strength of the concrete to be exceeded will be 

considered to be uncracked (Stadium I). Sections which are expected to crack 

will behave in a manner intermediate between the uncracked and fully cracked 

conditions and an adequate prediction of behaviour used in the program is 

shown below. 

 
The stiffness calculation is performed considering the required or the applied re- 

inforcement depending on what option has been selected. If applied reinforce- 

ment has been selected this is used in all load combinations. If applied 

reinforcement is not present or not selected the required reinforcement is used 
 

instead. In the latter case the required reinforcement in every element is calcula- 
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ted as the maximum value from all load combinations, which means that all cal- 

culations of serviceability limit values are performed with the same 

reinforcement. 

 
In the next step a new calculation based on the new stiffness distribution is per- 

formed and so on. When the deflection values resulting from two calculations 

does not differ more than a defined percentage of the first one or the maximal 

number of allowed calculations has been reached the calculation is stopped. 
 

Crack width 

Crack width is according to EC2 7.3.4 calculated as: 

wk = Sr,max (εsm - εcm) (1) 

where:   Sr,max is the maximum crack spacing, 

εsm is the mean strain in the reinforcement under the relevant com- 

bination of loads, including the effect of imposed deformations and 

taking into account the effects of tension stiffening. Only the addi- 

tional tensile strain beyond the state of zero strain of the concrete at 

the same level is considered, 

εsm is the mean strain in the concrete between cracks. 

εsm - εcm may be calculated from the expression: 

εsm − εcm =

σs − kt

fct,eff

ρp,eff
(1 + αeρp,eff)

Es

≥ 0,6
σs

Es

 

where: σs is the stress in the tension reinforcement assuming a cracked sec- 

tion. For pretensioned members, σs may be replaced by ∆σp the stress 

variation in prestressing tendons from the state of zero strain of the 

concrete at the same level, 

αe= is the ratio Es / Ecm 

Ap and Ac,eff are as defined in 7.3.2 (3), 

ξ1 according to Expression (7.5), 

kt is a factor dependent on the duration of the load 

 

 

 

 
 

kt = 0,6 for short term loading 
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kt = 0,4 for long term loading. 

For long term loads (kt = 0,4): 

Ap´ = 0,0 (pre or post-tensioned tendons) 

Ac,eff: 
 

 
 

 

hcef = min (2,5 * (h - d), (h - x) / 3, h / 2 

sr,max = k3c + k1 k2 k4φ /ρp,eff 

where:   φ is the bar diameter. Where a mixture of bar diameters is used in a 

section, an equivalent diameter, φeq, should be used. For a section 

with n1  bars of diameter φ1 and n2  bars of diameter φ2, the follo- 

wing expression should be used, 

𝜑𝑒𝑞 =
𝑛1𝜑1

2 + 𝑛2𝜑2
2

𝑛1𝜑1 + 𝑛2𝜑2

 

c is the cover to the longitudinal reinforcement, 

k1 is a coefficient which takes account of the bond properties of the 

bonded reinforcement: 

k1 = 0,8 for high bond bars, 
 

k1 = 1,6 for bars with an effectively plain surface (e.g. prestres- 

sing tendons), 

k2 is a coefficient which takes account of the distribution of strain: 

k2 = 0,5 for bending, 
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k2 = 1,0 for pure tension, 
k2 = (ε1 + ε2) / 2ε1 

where ε1 is the greater and ε2  is the lesser tensile strain at the 

boundaries of the section considered, assessed on the basis of a 

cracked section. 

Recommended values of k3 = 3,4 and k4 = 0,425 are used. 
 

Maximum crack spacing: 

sr,max = 1,3 (h - x) 
 

Equivalent quantities perpendicular to crack direction: 

• Reinforcement area: 

𝑨 = 𝑨𝝃 𝐜𝐨𝐬𝟐(𝜶 − 𝝃) + 𝑨𝜼 𝐜𝐨𝐬𝟐(𝜶 − 𝝃) 

 

• Number of bars: 

𝒏𝝃 =
𝐜𝐨𝐬(𝜶 − 𝝃)𝑨𝝃

(𝜫𝝋𝟐𝝃)/𝟒
  

𝒏𝜼 =
𝐜𝐨𝐬 (𝜶 − 𝜼)𝑨𝜼

𝜫𝝋𝟐𝜼/𝟒 
 

• Diameter: 

𝝋 =
𝐜𝐨𝐬(𝜶 − 𝝃)𝒏𝝃𝝋

𝟐𝝃 + 𝐜𝐨𝐬(𝜶 − 𝜼)𝒏𝜼𝝋
𝟐𝜼

𝐜𝐨𝐬(𝜶 − 𝝃)𝒏𝝃𝝋 𝝃 + 𝐜𝐨𝐬(𝜶 − 𝜼)𝒏𝜼𝝋 𝜼
 

Deflections 

The calculations is performed according to EC2 7.4.3. 
 

Stadium I Uncracked condition 

Load depended curvature is calculated as: 

1 / rf = M / Ec,ef I1 



66 Applied Theory and Design - Design calculations  

 

where:   M is current moment, 

I1 is Moment of Inertia in Stadium I, 

Ec,ef is the modulus of elasticity with respect to creep. 

The modulus of elasticity is calculated as: 

Ec,eff = Ecm / (1 + φ) 

where φ is the creep coefficient. 

 
Curvature with respect to shrinkage is considered according to 2.2.2 above. 

 
Stadium II Fully cracked condition 

Load depended curvature is calculated as: 
 

1 / rf = M / Ec,ef I2 

where:   Ec,ef is the modulus of elasticity as shown above, 

I2 is the moment of Inertia in Stadium II, 

M is current moment. 

Curvature with respect to shrinkage is considered according to 2.2.2 above. 

Sections which are expected to crack will behave in a manner intermediate bet- 

ween the uncracked and fully cracked conditions and an adequate prediction of 

this behaviour is given by: 

α = ζ αII + (1 - ζ) αI 

where:   α is in this case the curvature calculated for the uncracked and fully 

cracked conditions, 

ζ is a distribution coefficient given by ζ = 1 - β (σsr / σs)
2
 

ζ is zero for uncracked sections, 

β is a coefficient taking account of the influence of the duration of 

the loading or of repeated loading on the average strain, 

σs is the stress in the tension steel calculated on the basis of a crack- 

ed section, 
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σsr is the stress in the tension steel calculated on the basis of a 

cracked section under the loading which will just cause cracking at 

the section being considered. 

 
Note that stresses and moment of inertia are calculated with applied reinforce- 

ment if it is selected, otherwise with required reinforcement. 
 

 

2.2.4 Design calculations for bar structures 
 

 

2.2.4.1 Material properties 

Concrete 

 
 

• Ultimate limit states: 
Continuous line is used. 

• Servicibility limit states: 
Stage II is used (dashed line, without horizontal section). 



68 Applied Theory and Design - Design calculations  

 

Steel 
 

 

• Ultimate limit states: 

B graph with horizontal line is used. 

• Servicibility limit states: 

The same as ultimate but without safety factor. 
 

 

2.2.4.2 Longitudinal reinforcement 
 

Analysis of second order effects with axial load 

According to EC2 5.8. 

 
For calculation of 2nd order effect Nominal curvature method (5.8.8) is used. 

• If there is no compression force in the section the eccentricity is equal to 

0,0. 

• Buckling lengths l0x and l0y are specified by the user. 

• Curvature: 
 

1 / r = kr kϕ 1 / r0 

where: kr is a correction factor depending on axial load, 
 

κϕ is a factor for taking account of creep,  
1 / r0 = εyd / (0,45 d), 

d is the effective depth, 
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d = (h / 2) + is 

where is  is the radius of gyration of the total reinforcement area. 
kr = (nu - n) / (nu - nbal) ≤ 1 

where: 

n = NEd / (Ac fcd), relative axial force, 

NEd is the design value of axial force, 
nu = 1 + ω, 

nbal is the value of n at maximum moment resistance; the value 

0,4 is used, 

ω = As fyd / (Ac fcd), 

As is the total area of reinforcement, 

Ac  is the area of concrete cross section, 
kϕ = 1 + β ϕef ≥ 1 

where: 

ϕef is effective creep ratio, defined by the user, 

β = 0,35 + fck /200 - λ / 150, 

λ is the slenderness ratio. 

• 2nd order effect is ignored, if: 

λ ≤ λlim 

λlim = 20 A B C / √n 

where: A = 1 / (1 + 0,2 ϕef), 

B = √1 + 2 ω, 

C = 0,7 

ϕef is effective creep ratio, 

ω = As fyd / (Ac fcd), mechanical reinforcement ratio, 

As is the total area of longitudinal reinforcement, 

n = NEd / Ac fcd), relative normal force, 

rm = M01 / M02, moment ratio, 

M01, M02  are the first order en moments |M02| ≥ |M01|. 
 

• Geometric imperfection (5.2 (7) a): 

ei = l0 / 400 

• The minimum of all eccentricities (1st order + imperfection + 2nd order 
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effect): max (20,0; h / 30,0). 

• Imperfection and 2nd order effect considered in both directions. 

• The eccentricity is calculated in four possible positions: 

• Stiff direction+, weak direction+ 

• Stiff -, weak+ 

• Stiff+, weak- 

• Stiff-, weak- 

 

Torsion 

• Necessary longitudinal reinforcement area (Asl): 

TEd is the applied design torsion (see Figure 6.11): 
 

 
 

The required cross-sectional area of the longitudinal reinforcement for 

torsion ΣAsl may be calculated from: 

∑Asl fyd

uk

=
TEd

2Ak

cot θ 

where: uk is the perimeter of the area Ak, 

fyd is the design yield stress of the longitudinal reinforcement Asl, 

θ is the angle of compression struts, θ = 45 deg. 
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Considering torsion in calculation of longitudinal bars: 

Calculation of torsional capacity by edges, considering all bars placed 

in tef strip. The minimum of capacities gives the torsional capacity of 

the section. 

Utilization for torsion calculated for all bars placed in the strip one by 

one. 

Area of these bars decreased in the calculation of axial effects (N, 

My, Mz) in proportion of utilization (see formula below): 

𝐴′ = 𝐴(1 −
𝑇𝐸𝑑

𝑇𝑅𝑑
)     where: 

A is area of the bar, 

A’ is decreased area used in calculation  

 

ULS checking 
 

 
 

SLS checking 

Crack width calculated according to EC2 7.3. 

• Crack width calculated as: 

wk = sr,max (εsm - εcm) 

where: sr,max is the maximum crack spacing, 
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εsm is the mean strain in the reinforcement under the relevant 

combination of loads, including the effect of imposed derforma- 

tions and taking into account the effects of tension stiffening. 

Only the additional tensile strain beyond the state of zero strain 

of the concrete at the same level is considered, 

εcm is the mean strain in the concrete between cracks. 

εsm - εcm may be calculated from the expression: 

εsm − εcm =

σs − kt

fct,eff

ρp,eff
(1 + αeρp,eff)

Es

≥ 0,6
σs

Es

 

where: σs is the tension reinforcement assuming a cracked section, 

αe is the ratio Es / Ecm 

ρp,eff = As / Ac,eff, 

Ac,eff is calculated as below, 

kt is a factor dependent on the duration of the load, 

kt = 0,6 for short term loading, 

kt = 0,4 for long term loading (always supposed by the program), 

Ac,eff: 
 
 
 
 
 
 
 
 

hc,ef = min (2,5 (h - d), (h - x) / 3, h / 2) 

sr,max = k3 c + k1 k2 k4 φ / ρp,eff 

where: φ is the bar diameter. Where a mixture of bar diameters is used in 

a section, an equivalent diameter, φeq, should be used. For a sec- 

tion with n1 bars of diameter φ1 and n2 bars of diameter φ2, the 

following expression should be used, 

 𝜑𝑒𝑞 =
𝑛1𝜑1

2+𝑛2𝜑2
2

𝑛1𝜑1+𝑛2𝜑2
 

c is the cover to the longitudinal reinforcement, 

k1 is a cofficient which takes account of the bond properties of 
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the bonded reinforcement: 

k1 = 0,8 for high bond bars, 

k1 = 1,6 for bars with an effectively plain surface (e.g. pres- 

tressing tendons), 

k2 is a cofficient which takes account of the distribution of strain: 

k2 = 0,5 for bending, 

k2 = 1,0 for pure tension 

For cases of eccentric tension or for local areas, intermediate 

values of k2 should be used which may be calculated from the 

relation: 

k2 = (ε1 + ε2) / 2 ε1, 

where: ε1 is the greater and ε2 is the lesser tensile strain at the 

boundaries of the section considered, assessed on the basis of 

a cracked section. 

Recommended values of k3 = 3,4 and k4 = 0,425 are used. 

• Maximum crack spacing: 

sr,max = 1,3 (h - x) 

 

Space between bars 

• Minimum distance: 

The clear distance (horizontal and vertical) between individual parallel 

bars or horizontal layers of parallel bars should be not less than the max- 

imum of k1 bar diameter, (dg + k2 mm) or 20 mm where dg is the maxi- 

mum size of aggregate. 

• Maximum distance: 

The longitudinal bars should be so arranged that there is at least one bar 

at each corner, the others being distributed uniformly around the inner 

periphery of the links, with a spacing not greater than 350 mm. 
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Lengthening and anchorage 

• Because of shear effect (shift rule): 

ai = 0,9 max (h, b) 

The code prescribes d instead of h, but the difference can be ignored. 

• Anchorage: 

fbd = 2,25 η1 η2 fctd 

where: fctd is design value of concrete tensile strength. Due to the increa- 

sing brittleness of higher strength concrete, fctk, 0,05 should be li- 

mited here to the value for C60/75, unless it can be verified that 

the avarage bond strength increases above this limit, 

η1 is a coefficient related to the quality of the bond condition and 

the position of the bar during concreting: 

η1 = 0,7 

η2 is related to the bar diameter: 

η2 = 1,0 for φ ≤ 32 mm, 

η2  = (132 - φ) / 100 for φ > 32 mm 

lb,rqd = (φ / 4) (σsd / fbd) 

where: σsd = fyd (fully utilized bar supposed), 

lbd = α1 α2 α3 α4 α5 lb,rqd ≥ lb,min, 

αi = 1,0 

lb,min  is the minimum anchorage length if no other limitation is 

applied: 

• for anchorages in tension: 

lb,min > max (0,3 lb,rqd; 10 φ; 100 mm), 

• for anchorage in compression: 

lb,min > max (0,6 lb,rqd; 10 φ; 100 mm), 
Rule given for compression is used. 

 

 

2.2.4.3 Stirrups 

Shear 

In Figure 6.5 below the following notations are shown: 
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α is the angle between shear reinforcement and beam axis perpendicular to 

the shear force (measured positive as shown in Figure 6.5), 

θ is the angle between the concrete compression strut and the beam axis per- 

pendicular to the shear force, 

Ftd is the dessign value or the tensile force in the longitudinal reinforcement, 

Fcd is the design value of the concrete compression force in the direction of 

the longitudinal member axis, 

bw is the minimum width between tension and compression chords, 

z is the inner lever arm, for a member with constant depth, corresponding to 

the bending moment in the element under consideration. In the shear analy- 

sis of reinforced concrete without axial force, the approximate value z = 0,9 d 

may normally be used. 

 

• Member do not require shear reinforcement, if: 

The design value for the shear resistance VRd,c is given by: 

VRd,c = [CRd,c k (100 ρl fck)
1/3 + k1 σcp] bw d (6.2.a) 

with a minimum of: 

VRd,c = (vmin + k1 σcp) bw d (6.2.b) 

where: fck is in MPa 

𝑘 = 1 + √
200

𝑑
≤ 2.0   with d in mm 

𝜌𝑙 =
𝐴𝑠𝑙

𝑏𝑤𝑑
≤ 0.02 
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Asl is the area of the tensile reinforcement, which extends: 

≥ (lbd + d) beyond the section aonsidered (see Figure 6.3), 

bw is the smallest width of the cross-section in the tensile 

area [mm], 

σcp = NEd / Ac < 0,2 fcd [MPa], 

NEd is the axial force in the cross-section due to loading or pres- 

tressing [in N] (NEd > 0 for compression). The influence of impo- 

sed deformations on NE may be ignored, 

Ac is the area of concrete cross section [mm2], 

VRd,c is [N] 

The recommended value for CRd,c is 0,18 / γc, that for vmin is given by the 

expression below and that for k1 is 0,15. 

vmin = 0,035 k3/2 fck
1/2

 

 

 

• Upper limit of shear: 

VRd,max = αcw bw z ν1 fcd / (cotθ + tanθ) (6.9) 

where: Asw is the cross-sectional area of the shear reinfocement, 

s is the spacing of the stirrups, 

fywd is the design yield strength of the shear reinforcement, 

ν1 is a strength reduction factor for concrete cracked in shear, 

αcw is a coefficient taking account of the state of the stress in the 

compression chord. 

The recommended value of ν1 is ν (see expression below). 

The recommended value of αcw is as follows: 

1 for non-prestressed structures, 
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𝜈 = 0.6 [1 −
𝑓𝑐𝑘

250
] 

θ = 45 deg 

z = 0,9 d 

• Capacity of stirrups: 

𝑽𝑹𝒅,𝒔 =
𝑨𝒔𝒘

𝒔
 𝒛 𝒇𝒚𝒘𝒅 𝒄𝒐𝒕𝜽 

where: Asw is the cross-sectional area of the shear reinforcement, 

s is the spacing of the stirrups, 
 

fywd is the design yield strength of the shear reinforcement. 

Torsion 

TEd is the applied design torsion (see Figure 6.11) 
 

 
 

Ak is the area enclosed by the centre-lines of the connecting walls, including 

inner hollow areas, 
 

τt,i is the torsional shear stress in wall i, 

tef,i is the effective wall thickness. It may be taken as A/u, but should not be 

taken as less than twice the distance between edge and centre of the longitu- 

dinal reinforcement. For hollow sections the real thickness is an upper limit, 
 

A is the total area of the cross-section within the outer circumference, inclu- 

ding inner hollow areas, 
 

u is the outer circumference of the cross-section, 
 

zi is the side length of wall i defined by the distance between 

the intersection points with the adjacent walls, 
 

θ = 45 deg, 

in all 

calculation

s. 
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• Member do not require torsional reinforcement, if: 

TRd,c = fcd tef 2 Ak ≤ TEd 

 

• Upper limit of torsion: 

TRd,max = 2 ν αcw fcd Ak tef,i sinθ cosθ (6.30) 

where ν and αcw are as above. 

• Force in stirrups: 

TRd,max = 2ναcwfcdAktef,isinθcosθ 

The shear force VEd,i in a wall i due to torsion is given by: 

VEd,i = τt,i tef,i zi 

zi is section height used to be able to sum with shear. 

• Capacity of stirrups: 

See Shear. 

(6.29) 

 

Shear and torsion 

• Forces in stirrups: 

VEd = VEd(shear) / 2 + VEd(torsion) 

• No stirrup required: 

TEd / TRd,c + VEd / VRd,c ≤ 1,0 (6.31) 

• Upper limit of the effects: 

TEd / TRd,max + VEd / VRd,max ≤ 1,0 (6.29) 

• Calculation is done in two directions y' and z' independently. 
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2.3 Steel Design 
 
 

2.3.1 General 

The following design considers EC2 (standard) and the National Annex (NA) 

for Denmark, Finland, Germany, Hungary, Norway, Sweden and United King- 

dom. 

 
With the steel module arbitrary structures in space can be designed with regard 

to a 1th order or a 2nd order analysis. 

 
In the Code Check all checks prescribed in the codes depending on section ty- 

pe, section class and acting section forces are displayed. 
 

 

2.3.2 Limitations 
 

 

2.3.2.1 Torsion 

Only uniform torsion (St Venant torsion) is considered in the present version. 

For thin walled open sections the effect of warping torsion (Vlasov torsion) 

could be important and must then be considered separately. 
 

 

2.3.2.2 Crushing of the web 

Crushing of an un stiffened web due to a concentrated force is not checked in the 

present version. 
 

 

2.3.3 Global analysis 
 

 

2.3.3.1 General 

The design can be performed using either: 

1th order analysis, using the initial geometry of the structure or, 

2nd order analysis, taking into account the influence of the deformation of the 

structure. 
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2.3.3.1.1 Choise between a 1th order or a 2nd order analysis 

For structures not sensitive to buckling in a sway mode a 1th order analysis is 

sufficient. The design for member stability should then be performed with non- 

sway buckling lengths. 

 
In many cases it is easy to decide if a structure is sway or non-sway but in other 

cases it could be more difficult. 

 
One way to estimate if the non-sway condition is fulfilled is described in EC3 

part 1-1 with the following criterion: 

αcr = Fcr / FEd > 10 => Non-sway 

where: αcr is the critical parameter meaning the factor by which the design 

loading would have to be increased to cause elastic instability in a 

global mode, 

FEd is the design loading on the structure, 

Fcr is the elastic critical buckling load for global instability mode 

based on initial elastic stiffness. 

 
An imperfection calculation in FEM-Design will display the critical parameters 

for the number of buckling shapes required by the user as shown below. 
 

 
Critical parameter αcr displayed for the three first buckling shapes with regard to load combination L1. 
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As all critical parameters are > 10 a 1th order analysis and a design with non- 

sway buckling lengths would be sufficient in this case. 

 
If the criterion above is not fulfilled 2nd order effects must be considered but a 

1th order analysis could still be used in most cases. This could be done either by 

amplifying the 1th order moments or by using sway-mode buckling lengths. In 

FEM-Design the latter method should be used. 

 
A full 2nd order analysis can be used for steel design in all cases. 

 

 

2.3.3.2 Structural stability 

The calculations with regard to instability will be performed in different ways 

depending on the type of analysis. 

 

2.3.3.2.1 1th order theory 

For a 1th order design the following apply: 

 
Both the flexural, lateral torsional and torsional buckling are calculated depen- 

ding on the slenderness with respect to reduction factors specified in the appro- 

priate code. The reduced slenderness for flexural and torsional buckling may be 

computed as: 

λ = [A fy / Ncr]
1/2

 

 

The critical normal force for flexural buckling Ncr will in this case be calculated 

using appropriate buckling lengths defined by the user in both directions for all 

members. 

 
The critical normal force Ncr for torsional buckling will be calculated according 

to support conditions defined by the user for all members. 

 
The reduced slenderness for lateral torsional buckling may be computed as: 

λLT = [W fy / Mcr]
1/2

 

 

The critical moment Mcr will be calculated as buckling of the compressed flange 

with regard to a buckling lengdh defined by the user. 
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Imperfections 

Initial bow imperfections may be neglected as these effects are included in the 

formulas for buckling resistance of the members. 

 
For sway mode structures initial sway imperfections has to be considered. This 

could be done by changing the geometry before calculation or by defining sys- 

tems of equivalent horizontal forces as described below. 

 

2.3.3.2.2 2nd order theory 

A 2nd order calculation produces the critical normal force Ncr for flexural buck- 

ling and a corresponding stability check is not required. The critical normal for- 

ce Ncr for torsional buckling or the critical moment Mcr are not calculated since 

a basic finite element only contains the second order effects of the axial force 

and the effect of warping is neglected. The effect of the lateral torsional and tor- 

sional buckling will then have to be calculated as for 1th order above. 
 

Imperfections 

For all structures initial local bow imperfections should be considered. 

 
As the flexural buckling design is based on the 2nd order effects of the bending 

moments it is vital that there is a moment distribution in all members. By consi- 

dering local bow imperfections this is ensured also for hinged members without 

lateral load. 

 
For sway mode structures also initial sway imperfections has to be considered. 

This could be done in the conventional way by changing the geometry before 

calculation or by defining systems of equivalent horizontal forces as described 

in 2.3.3.3.1 below. 

 
In FEM-Design both initial bow imperfections and initial sway imperfections 

are considered automatically by using an alternative method presented in 

EC3 1-1 as described below in 2.3.3.3.2. The user has to connect each load com- 

bination to one of the calculated buckling shapes and the program will then cal- 

culate imperfections with regard to this shape. It is up to the user to decide how 

many buckling shapes that has to be considered and to which load combinations 

these shapes should be connected to receive an adequate result. No design based 

on a 2nd order analysis for compressed members can be performed without con- 
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sidering imperfection for one of the available buckling shapes. Some examples 

describing this process are presented in the manual Useful examples. 

 
Note! When performing a 2nd order calculation a division of the members in 

more than one finite element could strongly influense the result. See chapter 

2.3.3.4 for more information. 
 

 

2.3.3.3 Imperfections for global analysis of frames 

The following imperfections should be taken into account: 
 

1. Global imperfections for the structure as a whole. 

2. Local imperfections for individual members. 

 
The assumed shape of global imperfections and local imperfections may be deri- 

ved from the elastic buckling mode of a structure in the plane of buckling consi- 

dered. 

 
Both in and out of plane buckling including torsional buckling with symmetric 

and asymmetric buckling shapes should be taken into account in the most unfa- 

vourable direction and form. 

 
For frames sensitive to buckling in a sway mode the effect of imperfections 

should be allowed for in frame analysis by means of an equivalent imperfection 

in the form of an initial sway imperfection and individual bow imperfections of 

members. 

 

2.3.3.3.1 Conventional method 

• Global initial sway imperfections 

This effect could be considered in two ways. 
 

1. By changing the frame geometry before analysis 

with the slope  as shown below. 

The slope φ will be calculated according to the rele- 

vant code. 
 

2. By defining a system of equivalent horizontal 

forces as shown below: 
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Where, in multi-storey beam and column building frames, equivalent forces 

are used they should be applied at each floor and roof level. 

These initial sway imperfections should apply in all relevant horizontal di- 

rections, but need only be considered in one direction at a time. 

The possible torsional effects on a structure caused by anti-symmetric sways 

at the two opposite faces, should also be considered. 
 

 
 

• Relative initial local bow imperfections of 

members for flexural buckling 

Equivalent horizontal forces introduced for 

each member as shown below could consider 

this effect. 

The value eo considering initial bow as well 

as residual stresses is calculated according to 

the relevant code. 
 

2.3.3.3.2 Alternative method 
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As an alternative to the methods described above 

for calculating imperfections the shape of the 

elastic critical buckling mode ηcr of the structure may be applied as a unique 

global and local imperfection according to EC3 1-1. This method is used in 

FEM-Design when a 2nd order analysis together with imperfection for one of 
the available buckling shapes is chosen. 

 
The amplitude of this imperfection may be determined from: 

ηinit = e0d

NRk

EIηcr,max

ηcr 

where:   ηinit imperfection, 

ηcr buckling shape. 

𝑒0𝑑 =
𝛼(𝜆̅ − 0.2)

𝜆2̅

𝑀𝑅𝑘

𝑁𝑅𝑘

1 −
𝜒𝜆2̅

𝛾𝑀1

1 − 𝜒𝜆2̅
 

where:     𝜆̅ = √
𝛼𝑢𝑙𝑡,𝑘

𝛼𝑐𝑟
         is the relative slenderness of the structure 

α is the imperfection factor for the relevant buckling curve, 

χ is reduction factor for the relevant buckling curve depending on 

the cross-section and the relevant code, 

MRk  is the characteristic moment resistance of the critical cross- 

section, 
 

NRk  is the characteristic resistance to axial force of the critical 

cross-section, 

EI ηcr,max is the bending moment due to ηcr at the critical cross sec- 

tion, 

𝛼𝑢𝑙𝑡,𝑘 = min (
𝑓𝑦

𝜎𝑚𝑎𝑥

) 

where:  αmax is calculated from 1st order theory and -
𝑓𝑦

𝜎𝑚𝑎𝑥
 to be cal- 

culated at each cross-section. 
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αult,k is the maximum force amplifier for the axial force configura- 

tion NEd in members to reach the characteristic resistance NRk of 

the most axially stressed cross section without taking buckling into 

account, 

αcr is the minimum force amplifier for the axial force configuration 

NEd in members to reach the elastic critical buckling. 
 

To be able to perform a design based on a 2nd order analysis for compressed 

members imperfection for one of the available buckling shapes must be chosen 

by the user. It is important to decide which shapes that have to be considered for 

the current structure. Some examples are described in the manual Useful ex- 

amples. 
 

 

2.3.3.4  Division of members 

When performing a 2nd order calculation it is sometimes important to divide the 

members into more finite elements to get an accurate result. Some advice about 

this will be found below. 

 
Frame type structures 

A first calculation without division will show the force distribution in the struc- 

ture. All compressed members should then be divided into an even member of 

elements e.g. four. It is recomended only to divide members in compression but 

as in reality members can be in compression for one loadcase and in tension for 

another this is often not possible. 
 

If tensionend members are divided this could result in negative critical factors 

but they does not represent physical valid shapes and should be ignored. See 

also the manual Useful examples, Example 2. 

 
Truss type structures 

To perform a global stability chech the grid members should not be divided but 

if local buckling is of interest they should. See the manual Useful examples, 

Example 3. 
 

 

2.3.4 EuroCode (EC3) 
 

 

2.3.4.1 Classification of cross-sections 
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The classification is made according to EN 1993-1-1 5.5-5.6. 

 
A section is classified in section class 1, 2, 3 or 4 depending on the slenderness 

of the section, see EN 1993-1-1 5.5.2. Class 1 - The section can reach full plastic 

yielding, with sufficient rotation capacity for a plastic analysis. 

 
Class 2 - The section can reach full plastic yielding, but the rotation capacity is 

limited. 

 
Class 3 - The section can reach the yield limit without buckling. 

Class 4 - Local buckling will occur before the yield limit is reached. 

In case of general cross-section the line-topology have to be determined to dec- 

ide if the part is internal or outstand. 

 
It can be decided based on the connections, see picture below. 

Parts between two nodes are internal, all other outstand. 

If different parts of a section belongs to different classes the 

highest class will be chosen for the section. 
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2.3.4.2 Axial force capacity 

The capacity is calculated according to EN 1993-1-1 6.2.3-6.2.4. 

 
2.3.4.2.1 Tension force 

The capacity is calculated as: 

Nt,Rd = A fy / γM0 

where:   A gross area, 

fy design strength, 

γM0 partial factor. 

 

2.3.4.2.2 Compression force 

• Section Class 1, 2 and 3 

The capacity is calculated as: 

Nb,Rd = χ A fy / γM1 

where χ is the flexural buckling factor with regard to buckling around y-y 

axis and z-z axis respectively, γM1 partial factor. 

• Buckling factor 

The buckling factor is calculated as: 

χ = 1 / (Φ + (Φ2 - λ2)0,5) ≤ 0,1 

Φ = 0,5 [1 + α(λ - 0,2) + λ2] 

λ is the slenderness calculated as: 

λ = (A fy / Ncr)
0,5

 

Ncr is the elastic critical load for the relevant buckling mode. 

The imperfection factor α is related to five groups according to the table 

below: 

Group ao, α = 0,13; group a, α = 0,21; group b, α = 0,34; group 
c, α = 0,49; group d, α = 0,76. 

• Flexural buckling 

The slenderness parameter λ is calculated as: 

λ = (A fy / Ncr)
0,5
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Ncr is the critical load considering flexural buckling around the relevant 

axis. 

Ncry = E Iy (π / Lcry)
2; Ncrz = E Iz (π / Lcrz)

2
 

Lcr is the buckling length. 

• Torsional buckling and flexural-torsional buckling 

Torsional and flexural-torsional buckling is calculated according to EN 

1993-1-1 6.3.1.4. 

The slenderness parameter λT is calculated as: 

λT= (A fy / Ncr )
0,5

 

where Ncr = Ncr,TF and Ncr < Ncr,T 

Ncr,TF is the elastic torsional-flexural buckling force, 

Ncr,T is the elastic torsional buckling force, 

The critical load with regard to torsional buckling is calculated as: 

Ncr,T = 1 / ip 
2 (G IT  + E Iw  ( π / Lcr )

2
 

G is the shear modulus, 

ip is the polar radius of gyration which in this case is ip = ((Iy + Iz) / A )0,5
 

Lcr  is the relevant buckling length, 

Ncr,TF  is the critical load considering flexural-torsional buckling and is 

the lowest root to the third grade equation: 
 (Ncry – Ncr,TF) (Ncrz – Ncr,TF) (Ncr,T – Ncr,TF) – (Ncry – Ncr,TF) Ncr,TF

2 ez
2 / ip

2 

 (Ncrz – Ncr,TF) Ncr,FT
2 ey

2 / ip
2 = 0 

Ncry is the critical load with regard to flexural buckling around the y-axis 

as described above, 

Ncrz is the critical load with regard to flexural buckling around the z-axis 

as described above, 

Ncr,T is the critical load with regard to torsional buckling as described 

above, 

ey is the distance between the centre of gravity and the shear centre in the 

y-direction, 

ez is the distance between the centre of gravity and the shear centre in the 

z-direction, 
The polar radius of gyration is ip = (( Iy + Iz ) / A + ey

2
+ ez

2
 )

0.5 
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2.3.4.3 Bending moment capacity 

The capacity is calculated according to EN 1993-1-1 6.2.5 and 6.3.2.4. 

 
The capacity is calculated as: 

• Section class 1 and 2 

Mc,Rd = Wpl fy / γM0 

Mb,Rd = kfl χ Wpl fy / γM1 (capacity with regard to lateral-torsional buckling) 

where:   Wpl is plastic section modulus, 

fy is design strength, 

γM0, γM1 is partial factors, 

kfl modification factor accounting for the conservatism of the equi- 

valent compression flange method, 

χ is reduction factor of the equivalent compression flange. 

• Lateral-torsional buckling 

Lateral torsional buckling is calculated with the simplified assessment 

method according to EN 1993-1-1 6.3.2.4, flexural buckling of the com- 

pressed flange. 

The reduction factor χ is calculated as shown above for flexural buckling 

of the compressed flange. 

• Section class 3 

Mc,Rd = Wel fy / γM0 

Mb,Rd = kfl χ Wel fy / γM1 

Wel elastic section modulus. 

 
2.3.4.4 Shear capacity 

Calculated according EN 1993-1-1 6.2.6, EN 1993-1-5 5.1-5.3. 

 
The capacity is calculated as: 

Vpl,Rd = Av fy / 3
0,5 / γM0 
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Shear area 

• Solid sections 

Av = cross sectional area 

• Rolled I and H sections, load parallel to web 

Av  = A - 2 b tf  + (tw  + 2r) tf  ≥ η hw  tw 

• Rolled channel sections, load parallel to web 

Av = A - 2 b tf + (tw + r) tf 

• Rolled T- section, load parallel to web 

Av = 0,9 (A - b tf) 

• Welded I, H and box sections, load parallel to web 

Av = η Σ (hw tw) 

• Welded I, H, channel and box sections, load parallel to flanges 

Av = A Σ (hw tw) 

• Rolled rectangular hollow sections of uniform thickness: 

load parallel to depth Av = A h / (b + h) 

load parallel to width Av = A b / (b + h) 

• Circular hollow sections and tubes of uniform thickness 

Av = 2 A / π 

η is taken as 1,0. 

In cases not included above the elastic capacity is calculated as: 

τEd / (fy /(3
0,5 γM0)) ≤ 1,0 

 

Web buckling 

Calculated according to EN 1993-1-5 5.2 
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Web buckling is considered if: 

hw / tw >72 ε / η 

ε = (235 / fy )
0,5

 

η = 1,2 for steel grades up to S460 then η = 1,0 

 
The capacity is calculated as: 

Vb,Rd = Vbw,Rd + Vbf,Rd ≤ η fyw hw tw / (3
0,5 γM1) 

Contribution from web: 

Vbw,Rd = χw fyw hw tw / (3
0,5 γM1) 

 
The shear buckling factor χw is calculated as: 

 

 
 

The program will understand that the member has a non-rigid end post if no stif- 

feners are defined and as a rigid end post if a stiffener is defined at the very end 

of the member. For slender webs the capacity can be increased by defining addi- 

tional stiffeners as shown below. 

 
No transverse stiffeners defined: 

Slenderness parameter λw = hw /(86,4 tw ε) 

else: 

Slenderness parameter λw = hw /(37,4 tw ε κτ
0.5

)  
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τ w w 

τ w w 

 

κ = 5,34 + 4,0 (h  /a)2; a / h   ≥ 1 

κ = 4,0 + 5,34 (h /a)2; a / h  < 1 

a = largest distance between transverse stiffeners in the member. 
 

 

a = max (a1, a2, a3…) 

 

Contribution from flange 

When the flange resistance is not completely utilized in resisting the bending 

moment (MEd < Mf,Rd) the contribution from the flanges are calculated as: 

Vbf,Rd = bf tf fyf / (c γM1) (1 - (MEd / Mf,Rd)
2) 

bf ≤ 15 ε tf 

 
2.3.4.5 Shear and Torsion 

The capacity is calculated according to EN 1993-1-1 6.2.7. 

 
The capacity is calculated as: 

• I, H-sections or channel sections 

Vpl,T,Rd = [(1 - τT,Ed / (1,25 (fy / 3
0,5)/ γM0)] Vpl,Rd 

where:   Vpl,Rd is the shear capacity as above. 

• Hollow sections 

Vpl,T,Rd = [(1 - τT,Ed / ((fy /3
0,5) / γMo)] Vpl,Rd 

 
2.3.4.6 Warping torsion (Vlasov torsion) 

Warping torsion is not considered in the present version. 
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2.4 Timber Design 
 
 

2.4.1 General 

The following design considers EC5 (standard) and the National Annex (NA) 

for Denmark, Finland, Hungary, Norway and Sweden. 

 
With the timber module arbitrary structures in space can be designed with regard 

to a 1th order or a 2nd order analysis. 

 
In the Code Check all checks prescribed in the codes depending on acting sec- 

tion forces displayed. 
 

 

2.4.2 Global analysis 
 

 

2.4.2.1 General 

The design can be performed using either: 

1th order analysis, using the initial geometry of the structure or, 

2nd order analysis, taking into account the influence of the deformation of the 

structure. 
 

 

2.4.2.2 Structural stability 

The calculations with regard to instability will be performed in different ways 

depending on the type of analysis. 

 

2.4.2.2.1 1th order theory 

For a 1th order design the following apply: 

 
Both the flexural and lateral torsional buckling are calculated depending on the 

slenderness with respect to reduction factors specified in the appropriate code. 

The reduced slenderness for flexural buckling may be computed as: 

λ = [A fy / Ncr]
1/2
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The critical normal force for flexural buckling Ncr will in this case be calculated 

using appropriate buckling lengths defined by the user in both directions for all 

members. 

 
The reduced slenderness for lateral torsional buckling may be computed as: 

λLT = [W fy / Mcr]
1/2

 

 

The critical moment Mcr will be calculated according to support conditions and 

load levels defined by the user for all members. 
 

Imperfections 

Initial bow imperfections may be neglected as these effects are included in the 

formulas for buckling resistance of the members. 

 
For sway mode structures initial sway imperfections has to be considered. This 

could be done by changing the geometry before calculation or by defining sys- 

tems of equivalent horizontal forces as described below. 

 

2.4.2.2.2 2nd order theory 
 

A 2nd order calculation produces the critical normal force Ncr for flexural buck- 

ling and a corresponding stability check is not required. The critical moment 

Mcr are not calculated since a basic finite element only contains the second or- 

der effects of the axial force. The effect of the lateral torsional buckling will then 

have to be calculated as for 1th order above. 
 

Imperfections 

For all structures initial deformations should be considered. See EN 1995-1-1 

5.4.4. 

 
As the flexural buckling design is based on the 2nd order effects of the bending 

moments it is vital that there is a moment distribution in all members. By consi- 

dering initial deformations this is ensured also for hinged members without late- 

ral load. 
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Note! It is up to the user to ensure that all members have a 1th order moment 

distribution so the 2nd order effect and thereby also the buckling effect is consi- 

dered. 

 
For sway mode structures also initial sway imperfections has to be considered. 

This could be done in the conventional way by changing the geometry before 

calculation or by defining systems of equivalent horizontal forces as described 

in 2.4.2.3.1 below. 

 
Note! When performing a 2nd order calculation a division of the members in 

more than one finite element could strongly influense the result. It is recomen- 

ded to divide members in compression into an even member of elements e.g. 

four. 
 

 

2.4.2.3 Imperfections for global analysis of frames 

The following imperfections should be taken into account: 
 

1. Global imperfections for the structure as a whole. 
 

2. Local imperfections for individual members. 

 

2.4.2.3.1 Conventional method 

• Global initial sway imperfections 

This effect could be considered in two ways. 
 

1. By changing the frame geometry before analysis 

with the slope  as shown below. 

The slope φ will be calculated according to the rele- 

vant code. 
 

2. By defining a system of equivalent horizontal 

forces as shown below: 
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Where, in multi-storey beam and column building frames, equivalent forces 

are used they should be applied at each floor and roof level. 

These initial sway imperfections should apply in all relevant horizontal di- 

rections, but need only be considered in one direction at a time. 

The possible torsional effects on a structure caused by anti-symmetric sways 

at the two opposite faces, should also be considered. 
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• Relative initial local bow imperfections of 

members for flexural buckling 

Equivalent horizontal forces introduced for 

each member as shown below could consider 

this effect. 

 
The value eo considering initial bow deformation 

is calculated according to EN 1995-1-1 5.4.4. 
 

 

2.4.3 Ultimate limit state 

For a second order linear elastic analysis of a 

structure, design values, not adjusted for duration of load, shall be used. 
 
 

2.4.4 Load duration classes 

Actions shall be assigned to one of the load-duration classes given in EN 1995- 

1-1 table 2.1. 

 
Examples of load-duration assignment are given in EN 1995-1-1 table 2.2. 

 
 

2.4.5 Service classes 

Structures shall be assigned to one of three service classes according to EN 

1995-1-1 2.3.1.3. 
 

 

2.4.6 Materials and product properties 
 

 

2.4.6.1 Load-duration and moisture influences on strength 

The influence of load-duration and moisture content on strength is considered 

by the modification factor kmod, see EN 1995-1-1 table 3.1. 
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2.4.6.2 Load-duration and moisture influences on 

deformations 
 

Serviceability Limit State 

If the structure consists of members having different time-dependent properties, 

the final mean values of modulus of elasticity, shear modulus and slip modulus 

are calculated with the following expressions: 
 

Emean,fin = Emean / (1 + kdef) 

Gmean,fin = Gmean / (1 + kdef) 

Kser,fin = Kser / (1 + kdef) 

Ultimate Limit State 

The final mean value of modulus of elasticity, shear modulus and slip modulus 

are calculated with the following expressions: 

Emean,fin = Emean / (1 + Ψ2 kdef) 

Gmean,fin = Gmean / (1 + Ψ2 kdef) 

Kser,fin = Kser / (1 + Ψ2 kdef) 

where:   kdef is a factor for the evaluation of creep deformation given in 

EN 1995-1-1 table 3.2. 
 

Ψ2 is the factor for the quasi-permanent value of the action accor- 

ding to EN 1990 table A1.1. For permanent actions Ψ2 = 1,0. 

 
 

2.4.7 Verification by the partial factor method 
 

 

2.4.7.1  Design value of material property 

The design value of Xd of a strength property shall be calculated as: 

Xd = kmod Xk / γM 

where:   Xd is the characteristic value of a strength property, 
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kmod is a modification factor taking into account the effect of the 

duration of load and moisture content according to EN 1995-1-1 ta- 

ble 3.1, 

γM is the partial factor for a material property according to table 2.3 

below. 

 
Table 2.3 - Recommended partial factors γM for material properties and resistan- 

ces: 

 

 
 

NA Norway 

LVL, plywood, OSB γM = 1,3 
 

NA Finland 

Solid timber < C35 γM = 1,4 

Solid timber ≥ C35 γM = 1,25 

Glued laminated timber γM = 1,2 

Plywood, OSB, Particleboards, Fibreboards γM = 1,25 
 

NA Denmark 

Solid timber γM = 1,35 γ3 

Glued laminated timber γM = 1,3 γ3 

LVL, Plywood, OSB, Particleboards, Fibreboards γM = 1,3 γ3 
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The factor γ3 is chosen according to the following: 

 
 

The design member stiffness properties shall be calculated as: 

Ed = Emean / γM 

Gd = Gmean / γM 

where:   Emean is the mean value of modulus of elasticity, 

Gmean is the mean value of shear modulus 

 

2.4.8 Material properties 

EN 1995-1-1 ch. 3 
 

 

2.4.8.1 Solid Timber 
 
2.4.8.1.1 Strength classes 

EN 1995-1-1 3.2, EN 338 5 

 
Table 1 -- Strength classes - Characteristic values: 

 

 

 
 

Table 1 -- Strength classes - Charasteristic values: 
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For rectangular solid timber with a characteristic density ρk  ≤ 700 kg/m3  and 

depths in bending or widths in tension less than 150 mm the characteristic valu- 

es for fm,k and ft,0,k may be increased by the factor kh given by: 

kh = min [ (150 / h )0.2 , 1,3] 

where:   h is the depth for bending members or width for tension members, 

in mm. 
 

 

2.4.8.2 Glued laminated timber 
 
2.4.8.2.1 Strength classes 

EN 1995-1-1 3.3, EN 1194 5 

 
Table 2 -- Strength classes - Charasteristic values: 
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From these tables the following standard classes must be available: 

 
Solid timber: C14, C16, C18, C20, C22, C24, C27, C30, C35, C40, C45, C50, 

D30, D35, D40, D50, D60, D70. 

 
Glued laminated timber: GL 24, GL 28, GL 32, GL 36. 

Any user defined material will also be possible to define. 

As the modulus of elasticity and shear modulus are dependent of each other 

either one or the other could be defined by the user for user defied materials. 

 
For rectangular glued laminated timber with depths in bending or widths in ten- 

sion less than 600 mm the characteristic values for fm,k and ft,0,k may be in- 

creased by the factor kh given by: 
 

kh = min [ (600 / h )0.1 , 1,1] 

where:   h is the depth for bending members or width for tension members, 

in mm. 





Applied Theory and Design - Section Editor 105  

 

3 Section Editor 
 

 
 

3.1 Basics 
 

The section editor program is an independent but well-connected part of the 

FEM-Design package. This part is for creating, calculating and organizing 

cross-sections for the FEM-Design. 

 
The section database can be reached and used from the other parts of the FEM- 

Design package (Plate, 3D Frame and 3D Structure modules). 

 
In the section database of the FEM-Design the shape of the sections are defined 

by so called regions. A region is a contour formed by lines and arcs and might 

have holes in it formed also from arcs and lines. A cross-section could be defi- 

ned by more than one region. 

 
The sections in the section database are material independent, however on crea- 

tion some material like parameters can be defined and the sections are divided 

into groups by the possible usage of the section. For example a solid rectangle 

section usually is not a steel section but can be concrete or wooden. An IPE 100 

on the right usage is a steel cross-section but nothing in the FEM-Design res- 

trains you from using the shape with other materials too. The material-like para- 

meters are for example rolled steel; cold worked steel; generic section; and other 

similar information (refer to the User’s Guide of the FEM-Design). This infor- 

mation is for future use currently but please define correctly at every cross-sec- 

tion. 

 
Not just the shape of the cross-section is stored in the section database of the 

FEM-Design, but the geometrical parameters too, like area, inertia, section 

modulus and so on. The section parameter calculation engine in the section edi- 

tor calculates these values. 

 
The calculation of the geometric parameters is a finite element calculation. In 

the background of the calculation of the geometrical parameters a suitable finite 

element mesh is generated on the same basics that are described in the section 

1.1.10. 
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The next chapter gives information about the theory of the geometric parameters 

calculation. 
 

 

3.2 Calculation of the geometrical properties 
 

Beam finite elements of arbitrary cross sections are important members of finite 

element models for a variety of practical applications. In the effective use of 

such elements, at the modelling stage, the user is faced with the time consuming 

problem of accurate determination of beam cross sectional properties. 
 

In the analysis of beams, the follo- 

wing local coordinate systems and 

notations are used (see Fig. 1): 

• N node of finite element mesh, 

• G centroid, 

• S shear centre, 

• x, y, z local coordinates, where 

x is passing through element 

nodes, 

• x', y', z' central axes, parallel 
to x, y, z (i.e. x' is the beam ax- 

is), 

• yG, zG coordinates of G cen- 

troid, relative to N node, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 

• yS, zS coordinates of S shear (torsion) centre, relative to G centroid, 

• exmax, exmin, eymax, eymin, e1max, e1min, e2max, e2min distances of extreme fibres. 

 
The cross sectional properties are related to internal forces, namely tension, ben- 

ding, torsion (free or constrained) and shear. The general solution of elastic 

beam problems can be found in many textbooks, for example in references [3] 

and [4], only the definitions and final results will be presented. 
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3.2.1 Tension, bending 

The well known formula calculating the normal stress distribution due to tension 

and bending: 

σx =
N

A
+ My

Izz − Iyzy

D
− Mz

Iyy − Iyzz

D
 

The cross sectional properties appearing here are: 

area: 

A = ∫ dA
A

  (1) 

co-ordinates of centroid: 

𝑦𝐺 =
1

𝐴
∫ 𝑦 𝑑𝐴
𝐴

,    𝑧𝐺 =
1

𝐴
∫ 𝑧 𝑑𝐴
𝐴

  (2) 

moment of inertia with respect to centroidal 

axes:Iy = ∫ 𝑧2 𝑑𝐴,   𝐼𝑧 =
𝐴

∫ 𝑦2
𝐴

 𝑑𝐴,   𝐼𝑦𝑧 = ∫ 𝑧𝑦 𝑑𝐴,    𝐷 = 𝐼𝑦 − 𝐼𝑧 − 𝐼𝑦𝑧
2

𝐴
 

 (3) 

The principal moments of inertia and the angle α of the 1 principal axis are: 

α = atan (2
𝐼𝑦𝑧

𝐼𝑧−𝐼𝑦
) (4) 

I1 = Iy cos2α + Iz sin2α - Iyz sin22α,I2 = Iy sin2α + Iz cos2α - Iyz sin22α  

 
Using the principal axes as local coordinate directions, the maximums of ben- 

ding stress components are: 

σx,1max =
|M1|

W1
, σx,2max =

|M2|

W2
  

where the sectional properties are the principal section moduli: 

𝑊1 =
𝐼1

𝑒2𝑚𝑎𝑥 
, 𝑊2 =

𝐼2

𝑒1𝑚𝑎𝑥
  (5) 

In many tension/compression and bending related problems (eq. eccentric com- 

pression, the slenderness calculation) the radius of inertia is used. The defini- 

tions of radius of principal inertia are:  

i1 = √
I1

A
, i2 = √

I2

A
  (6) 
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3.2.2 Elastic-plastic bending 

The normal stress distribution due to simple 

bending of section, supposing the material is 

perfectly elastic-plastic (no strain hardening) is 

shown in Fig. 2. The axis ξ is passing trough the 

G centroid, while the line η divides the area into 

halves. The ξ axis of bending is either one of 

principal axes or parallel to one of the symmetry 

lines.  

 

 
 

 
Fig. 2 

 

There are two specific moments, Me elastic limit moment when the maximum 

stress equals to the σY yield stress,  

σxmax = σy =
Me

Wξ

, Me = σyWξ 

and the MY plastic limit (ultimate) moment: 

My = 2σyS0ξ (7) 

where:   S0ξ is the static (linear) moment of half area with respect to the axis 

ξ. The elastic-plastic moment capacity is defined as: 

𝑒𝜉 =
𝑀𝑦

𝑀𝑒
=

2𝑆0𝜉

𝑊𝜉
≥ 1.0  (8) 

3.2.3 Free torsion 

Due to a torque Mx each section of a straight beam undergoes a rotation about the 

point S, here called of torsion centre. In case of free torsion-when the torsio- nal 

warping of the cross section is not constrained-the rate of twist is constant. 

Assuming homogeneous, elastic material, the shear stress distributions are given as: 

τxy =
Mx

It
(
∂φ

∂y
− z) , τxy =

Mx

It
(
∂φ

∂z
+ y) 

The cross sectional property is the torsion moment of inertia: 

It = Iy + Iz − ∫ (z
∂φ

∂z
− y

∂φ

∂y
) dA

A
  (9) 

and the co-ordinates of S torsion centre: 

ys = −(𝐼𝑧 ∫ zφdA
A

− Iyz ∫ yφdA
A

) /𝐷, 𝑧𝑠 = − (𝐼𝑧 ∫ yφdA
A

− Iyz ∫ zφdA
A

) /𝐷 (10) 

The maximum of torsion stresses can be calculated with the Wt torsion section 

modulus as: 
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τmax = (√τxy
2 + τxz

2 )
max

=
Mx

Wt
 (11) 

It follows from the internal equilibrium of linear elasticity and the boundary 

conditions that the ϕ(y,z) warping function is the solution of the following diffe- 

rential equation: 

∂2φ

∂y2
+

∂2φ

∂z2
= 0, (

∂φ

∂y
− z)m + (

∂φ

∂z
− y)n = 0  (I.) 

where:   m and n are the components of outward unit normal vector of sec- 

tion contour. 
 

 

3.2.4 Constrained torsion 
If the torsional warping of the cross section of the straight beam is constrained, in 

addition to the shear stresses a secondary normal stress distribution appears: 

σx =
B

IΓ
(φ − yzs + zys) 

In this equation B(x) is the bimoment and the cross sectional property is the war- ping 

parameter defined as: 

IΓ = ∫ (φ − yzs + zys)
2𝑑𝐴

𝐴
  (12) 

For thin walled sections the warping function or the sector area function with 

pole S is: 

ω ≈ (φ − yzs + zys) 

 

3.2.5 Shear 

The beam is free of torsion if the Vy and Vz shear forces are passing through the S 

point. It follows from the Betti’s theorem, that the centre point of torsional ro- 

tation of the section and the shear centre are identical. The shear stress distribu- 

tions from the ψ1(y,z) and ψ2(y,z) shear stress functions can be calculated as: 

τxy =
𝑉𝑦

𝐴

∂ψ
1

∂y
+

𝑉𝑧
𝐴

∂ψ
2

∂y
, τxy =

𝑉𝑦

𝐴

∂ψ
1

∂z
+

𝑉𝑧
𝐴

∂ψ
2

∂z
 

In using the finite element method for elastic structures, the stiffness matrix is 

derived from the U internal energy. The Us shear contribution of the beam inter- 

nal energy per unit length, with shear modulus G, is: 
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Us =
1

2G
∫ (τxy

2 + τxz
2 )dA =

1

2GA
(
Vy

2

ρy

+
Vz

2

ρz

+
VyVz

ρyz

)
A

 

The cross sectional properties are the shear factors: 

ρy
−1 = ∫

ψ1(Iyy−Iyzz)

D
dA 

A
, ρz

−1 = ∫
ψ2(Izz−Iyzy)

D
dA 

A
,   

ρyz
−1 = ∫

ψ1(Izz−Iyzy)+ψ2(Iyy−Iyzz)

D
dA 

A
   (13) 

Transforming the y, z coordinates into the 1 and 2 principal directions, the shear 

factors are the principal shear factors: 

𝜌1 = 𝜌𝑦, 𝜌2 = 𝜌𝑧, 𝑎𝑛𝑑       𝜌12 = 𝜌𝑦𝑧 = 0 

The quantities A1 = (A ρ1) and A2 = (A ρ2) are called by shear areas. 

From the condition of internal equilibrium two boundary value problems can be 

derived: 

if Vy = 1 and Vz = 0, 

∂2ψ1

∂y2
+

∂2ψ1

∂z2
= −

A

D
(Iyy − Iyzz),

∂ψ1

∂y
m +

∂ψ1

∂z
n = 0  (13) 

if Vy = 0 and Vz = 1, 

∂2ψ2

∂y2
+

∂2ψ2

∂z2
= −

A

D
(Izz − Iyzy),

∂ψ2

∂y
m +

∂ψ2

∂z
n = 0  (14) 

where:   m and n are the components of outward unit normal vector of 

sec- tion contour. 
 

The approximate distribution of shear stress in a thin walled section takes the 

form: 

τsx(𝑠) = −
𝑉𝑦

𝑡(𝑠)𝐷
[𝐼𝑦𝑆𝑦(𝑠) − 𝐼𝑦𝑧𝑆𝑦(𝑠)]  −

𝑉𝑧

𝑡(𝑠)𝐷
[𝐼𝑧𝑆𝑧(𝑠) − 𝐼𝑦𝑧𝑆𝑧(𝑠)] 

where:   Sy, and Sz are the static (linear) moment func- 

tions: 

 

Sy(s) = ∫ ztds
P(s)

A
, Sz(s) = ∫ ytds

P(s)

A
   (15)

Using the principal axes as local coordinate directions the               Fig. 3 

shear stress distribution is: 

τsx(s) =
V1S2(s)

t(s)I2
−

V2S1(s)

t(s)I1
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3.2.6 Lateral buckling 

In the lateral-torsion buckling analysis of non symmetric section columns the 

so-called Wagner’s coefficients are used. They are defined as follows: 

βy =
1

Iy
∫ z(y2 + z2)dA − 2zs
A

,   βz =
1

Iz
∫ y(y2 + z2)dA − 2ys
A

 

βω =
1

Iω
∫ ω(y2 + z2)dA
A

 (16) 

In the local system of "1" and "2" principal axes (see Fig.1): 

z1 = βy, z2 = βy, zω = βω (17) 
 

These properties for a double symmetric section are zeros, so they can be termed 

as asymmetry properties. If the principal axis "1" is a symmetry line of the sec- 

tion than z1 equals to zero and same holds for z2. 
 

3.2.7 Finite element method for sections 

The (I.), (II.) and (III.) elliptic boundary value problems can be transformed 

into the following energy principles or weak forms: 

Π0 = ∫ {
1

2
[(

∂φ

∂y
)

2

+ (
∂φ

∂z
)

2

] − (
∂φ

∂y
z +

∂φ

∂z
y)} dA = extr

A
  (Ia.) 

Π1 = ∫ {
1

2
[(

∂ψ1

∂y
)

2

+ (
∂ψ1

∂z
)

2

] − ψ
1
(Iy𝑧 − 𝐼𝑧𝑧)

𝐴

𝐷
 } dA = extr

A
  (IIa.) 

Π2 = ∫ {
1

2
[(

∂ψ2

∂y
)

2

+ (
∂ψ2

∂z
)

2

] − ψ
2
(I𝑧𝑧 − 𝐼𝑦𝑧𝑧)

𝐴

𝐷
 } dA = extr

A
  (IIIa.) 

These problems can be solved by a 2D finite element method, where the stiff- 

ness matrix, derived from the quadratic part of principles, are the same. The 

only differences are in the linear parts, which are leading to three different right 

hand sides. Using a quadratic (8 or 6 node) isoparametric finite element formu- 

lation with one degree of freedom per node, the cross sectional properties can be 

calculated. The average element size is calculated automatically and the mesh is 

generated automatically too using this average element size. All integrals are 

calculated by Gauss quadratures. 
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Property Equation 

A area (1) 

yG, zG coordinates of centroid (2) 

ys, zs coordinates of shear (torsion) centre (I.), (10) 

Iy, Iz, Iyz second moment of inertia (3) 

I1, I2 principal moments of inertia (4) 

α angle of local x and ”1” principal direction (4) 

W1, W2 principal section modulus (5) 
 

Wy, Wz 

 

section modulus 
Wy = Iy / ezmax 

Wz = Iz / eymax 

i1, i2 radius of principal inertia (6) 

 

iy, iz 

 

radius of inertia 𝑖𝑦 = √
𝐼𝑦

𝐴
. 𝑖𝑧 = √

𝐼𝑧

𝐴
. 

 
, ρ1 , ρ2 principal shear factors (II.), (III.), (14) 

ρy , ρz , ρyz shear factors (II.), (III.), (13) 

It torsion moment of inertia (9) 

Wt torsion section modulus (11) 

IΓ warping parameter (12) 

Symax, Szmax maximum of static moments (15) 

S1max, S2max maximum of principal static moments (15) 

S01, S02 principal static moment of half section (7) 

c1, c2 plastic/elastic moment capacity (8) 

z1, z2, zω Wagner´s parameters (16), (17) 

 
 



 

 

4 Geotechnical module 
More detailed information will be available in the near future. 
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