Verification Examples FEM-Design 16.0

St ru SOft @ FEM-Design

FEM-Design

Verification Examples

version 1.1
2016




Verification Examples FEM-Design 16.0

StruSoft

StruSoft AB
Visit the StruSoft website for company and FEM-Design information at
www.strusoft.com

Verification Examples
Copyright © 2016 by StruSoft, all rights reserved.

Trademarks
FEM-Design is a registered trademark of StruSoft.



http://www.strusoft.com/

Verification Examples FEM-Design 16.0

Contents
1. Linear Static CAlCULAtIONS .....cc.eeruirieriieieeiietcete ettt e et eeaeeens 4
1.1 Beam with two point loading at one-third of itS Span...........ccceevciieerciieeriie e 4
1.2 Calculation of a circular plate with concentrated force at its center...........cocceeeveveereennenne. 6
1.3 A simply supported square plate with uniform load...........c..cccceeeriiiiiiiiiniiiiee e, 10
2. SeCONd OTAET ANALYSIS......ieiuiiiiieiieeiierie ettt ettt et siee et esteesbeesteeenbeessaeenbeesensaeesanseeessseeas 12
2.1 A column with vertical and horizontal loads.............cceeeeiiieiiieeiiiececceee e, 12
2.2 A plate with in-plane and out-of-plane 10ads............cccoveriiiiiiiiiienieeieeece e 15
R 721 o1 B A 10T 1 4] T PSSR 19
3.1 Flexural buckling analysis of a beam modell with different boundary conditions.............. 19
3.2 Buckling analysis of a plate with shell modell.............cccoooiiiiiiiiniiiiee e, 21
3.3 Lateral torsional buckling of an I section with shell modell...............cccceeveriiiiiinnnnnnnne. 24
3.4 Lateral torsional buckling of a cantilever with elongated rectangle section........................ 26
4. Calculation of eigenfrequencies with linear dynamic theory...........cccoecveevieniiieeniiie e, 28
4.1 Continuous mass distribution on a cantilever column.............ccoceeriiniiiiiniiiiiieeieeee, 28
4.2 Free vibration shapes of a clamped circular plate due to its self-weight................cooceeee. 31
5. SEISMIC CAICUIALION. ... .eiiiiiieeiiie ettt et e e e et e e e ta e e etaeessaeesnssaeeeeennnsaeeeaeans 33
5.1 Lateral force method with linear shape distribution on a cantilever............c.c.cccoecveeveennee. 33
5.2 Lateral force method with fundamental mode shape distribution on a cantilever............... 36
5.3 Modal analysis of a concrete frame building............cccoeeveeriiiiiiniiienienieceeeeeeee e 38
6. Calculation considering diaphragmiS.........cccueeeuieerieeeiiieeiieeceeeeeeeetee e e e sreeeeaeeesaeessaeeeas 47
6.1. A simple calculation with diaphragms.............ccecieriiiiiieriiiiiieeeee e 47
6.2. The calculation of the shear Center............ccooiiiiiiiiiiiiii e 47
7. Calculations considering nonlinear effects..........c.oovvueviiieriieiiieniieeiieeeeee e 52
7.1 UPLift CAlCUIAtION......eiiiiiiieiie ettt e e e e e et e e e e itaa e e e e e esnssaeeaeeennes 52
7.1.1 A trusses with limited cOMPression MEMDETS...........ceecvierieriiienieeiieriieereesiaeeeeieee e 52
7.1.2 A continuous beam with three SUPPOTILS .......eeeiiiieiiiieiie e 58
7.2 Cracked section analysis by reinforced concrete elements...........cceeeeveerieriieenieeieenneeennne 69
7.2.1 Cracked deflection of a simply supported beam...........ccceeevereriieiniiiieiiieeiee e, 69
7.2.2 Cracked deflection of a cantilever beam............coeevueriirienieniienienieieeeee e 74
7.3 Nonlinear s0il calculation...........c.ooiuiiiiiiiiiiie e 80
8. CTOSS SECLION ©AILOT ... eitieiiieiieiiieie ettt ettt sttt ettt b et et e bt et s e nbeennee 81
8.1 Calculation of @ cOMPOUNd CTOSS SECLION. ......eeeivieeerieeiiieeirieeiteeereeeeteeeeeeeesaeeessseeeneseeens 81
0. DeSigN CAlCUIATIONS. .......eiiiieiiiieiieeiie ettt ettt ettt eteesaae e bt e ssaeenteesabeenseessseensseeeensneeas 82
9.1 Required reinforcement calculation for a slab............cccceeeeiiiiiiiiiniiiiceeee e, 82
RETETEICES. ...ttt ettt sttt et b et et s bttt et e bt et et e nbeeneee 103
INOEES. ettt ettt ettt e ettt e et e ettt e e a bt e e hb et e bt e e e h bt e e bt e e sbt e e s bbbeeeeeenane 104
In this verification handbook we highlighted the analytical results with green and the finite
element results with blue background for better comparison. The analytical closed formulas
are highlighted with a black frame.
If the finite element mesh is not mentioned during the example it means that the
automatically generated mesh was used.
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1. Linear static calculations

1.1 Beam with two point loading at one-third of its span

Fig. 1.1.1 left side shows the simple supported problem. The loads, the geometric and material
properties are as follows:

Force F=150kN

Length L=6m

Cross section Steel I beam HEA 300
The second moment of inertia in the relevant direction [,=1.8264:10*m*
The shear correction factor in the relevant direction p.=0.21597

The area of the cross section A=112.53 cm?
Young's modulus E =210 GPa

Shear modulus G =80.769 GPa

¢F ¢F ¢ESF=1
s e

L3 L3 L/3 L2 L2

Y v v v 4 Y Y
d 7

" MMM s * MM g,

Figure 1.1.1 — The beam theory and the application of a virtual force

The deflection of the mid-span based on the hand calculation (based on virtaul force theorem
[1], see Fig. 1.1.1 right side also):

2M|L22L1 ,L2L L1L1| 2F L| 23 FL FL
e=—r|=S="= +o =S |05 |= +
El |33342 634 6342]| pGA 3| 648 EI 3pGA
23 150-6° 150-6

= + =0.03151 m=31.51
648 210000000-1.8264-10*  3:0.21597-80769000-0.011253 o o
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The first part of this equation comes from the bending deformation and the second part comes
from the consideration of the shear deformation as well, because FEM-Design uses Timoshenko
beam theory (see the Scientific Manual).

The deflection and the bending moment at the mid-span based on the linear static calculation
with three 2-noded beam elements (Fig. 1.1.2 and Fig. 1.1.3):

ey =31.51mm and the bending moment M, =300 kNm

The theoretical solution in this case (three 2-noded beam elements) must be equal to the finite
element solution because with three beam elements the shape functions order coincides with the
order of the theoretical function of the deflection (the solution of the differtial equation).

150 kN
150 kN

Figure 1.1.2 — The finite element model

S S
T 31.51 T
Figure 1.1.3 — The mid-span deflection [mm]|

Therefore the difference between the results of the two calculations is zero.




Verification Examples FEM-Design 16.0

1.2 Calculation of a circular plate with concentrated force at its center

In this chapter a circular steel plate with a concentrated force at its center will be analyzed. First
of all the maximum deflection (translation) of the plate will be calculated at its center and then
the bending moments in the plate will be presented.

Two different boundary conditions will be applied at the edge of the plate. In the first case the
edge is clamped (Case 1.) and in the second case is simply supported (Case II.), see Fig. 1.2.1.

Figure 1.2.1 — Clamped (Case 1.) and simply supported (Case I1.) circular plate with concentrated force

The input parameters are as follows:

The concentrated force P=10kN
The thickness of the plate h=0.05m
The radius of the circular plate R=5m

The elastic modulus E =210 GPa
The Poisson's ratio v=0.3

The ratio between the diameter and the thickness is 2R/h = 200. It means that based on the
geometry the shear deformation only have negligible effects on the maximum deflections. It is
important because FEM-Design uses the Mindlin plate theory (considering the shear
deformation, see Scientific Manual for more details), but in this case the solution of Kirchhoff's
plate theory and the finite element result must be close to each other based on the mentioned
ratio.

The analytical solution of Kirchhoff's plate theory is given in a closed form [2][3].
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Case L.
For the clamped case the maximum deflection at the center is:
PR
ER’
12(1-v?)

W=

161

The reaction force at the edge:

P

O=3R

And the bending moment in the radial direction at the edge:

_r
47

With the given input parameters the results based on the analytical and the finite element
solutions (with the default finite element mesh size, see Fig. 1.2.2) are:

2
W= 10-5 —1=0.002069 m =2.069 mm Wy =2.04 mm
210000000-0.05
161 >
12(1-0.3%)
10 _ kN 3 kN
0,=5 ==0318— Qe =0.318—
P 10 kNm kNm
=" Y . —_— M = —
a= g 09— airen = 0.796 =

Figure 1.2.2 — The clamped (Case 1.) and the simply supported (Case Il.) plate with the default mesh
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Case II.:

For the simply supported case the maximum deflection in the center is:

PR’ 3+v
WS‘S
’ EW 1+v
67| ———
12(1-v7)

The reaction force at the edge:

Q_zer

With the given input parameters the results based on the analytical and the finite element
solutions (with the default finite element mesh size, see Fig. 1.2.2) are:

2
W= 10-5 : 34+0.3 =0.005252 m=5.252 mm W —500mm
210000000-0.05° |\ 1+0.3
16 1 >
12(1-0.3")
10 -
’:—2715_0 318kN/m Q,F]‘,M=0.318E

Figure 1.2.3 — The deflected shape of Case I. (clamped) and Case II. (simply supported) with the default mesh

Fig. 1.2.3 shows the two deflected shape in side view. The different boundary conditions are
obvious based on the two different displacement shape. The differences between the analytical
solutions and finite element solutions are less than 5% but the results could be more accurate if
the applied mesh is more dense than the default size.

Based on the analytical solution the bending moments in plates under concentrated loads are
infinite. It means that if more and more dense mesh will be applied the bending moment under
the concentrated load will be greater and greater. Thus the following diagram and table (Fig.
1.2.4 and Table 1.2.1) shows the convergence analysis of Case I. respect to the deflection and
bending moment. The deflection converges to the analytical solution (wy = 2.07 mm) and the
bending moment converges to infinite.
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Figure 1.2.4 — Convergence analysis regarding to deflection and bending moment

Number of elements | Deflection Bending moment Average element size [m]
[pes.] [ [KNm/m]
341 2,034 2,73 0,5
533 2,057 391 04
957 2,060 3,62 0,3
2035 2,068 433 0,2
7994 2,072 5,49 0,1
31719 2,073 6,40 0,05
31772 2,075 10,70 Local refinement 1
31812 2,076 14,30 Local refinement 2
Table 1.2.1 — The convergence analysis
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1.3 A simply supported square plate with uniform load

In this example a simply supported concrete square plate will be analyzed. The external load is a
uniform distributed load (see Fig. 1.3.1). We compare the maximum displacements and
maximum bending moments of the analytical solution of Kirchhoff's plate theory and finite
element results.

The input parameters are in this table:

The intensity of the uniform load p =40 kN/m*
The thickness of the plate h=0.25m
The edge of the square plate a=5m

The elastic modulus E =30 GPa
Poisson's ratio v=0.2

The ratio between the span and the thickness is a/h = 20. It means that based on the geometry
the shear deformation may have effects on the maximum deflection. It is important because
FEM-Design uses the Mindlin plate theory (considering the shear deformation, see Scientific
Manual for more details), therefore in this case the results of Kirchhoff's theory and the finite
element result could be different from each other due to the effect of shear deformations.

Vv

Figure 1.3.1 — The square plate with simply supported e;l;ges, uniform load and default mesh size

Based on Kirchhoff's plate theory [2][3] the maximum deflection is in the center of the simply
supported square plate and its intensity can be given with the following closed form:

4
W =0.00416 —L2
Eh

12(1-v?)

10
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The maximum bending moment in the plate if the Poisson's ratio v =0.2:

M,,.=0.0469 pa’

According to the input parameters and the analytical solutions the results of this problem are the
following:

The deflection at the center of the plate:
40-5°
30000000-0.25°
12(1-0.2%)

W e =0.00416 ( ) —0.002556m=2.556mm W, s, =2.632mm

The bending moment at the center of the plate:

M, =0.0469-40-5°=46.9 kNTm M, =4597 %

Next to the analytical solutions the results of the FE calculations are also indicated (see Fig,
1.3.2 and 1.3.3). The difference is less than 3% and it also comes from the fact that FEM-Design
considers the shear deformation also (Mindlin plate theory).

L@lf‘w"/

L
) i
W‘Tﬂﬁﬁf RERE22N ﬁ‘/w"(/

S0

Figure 1.3.2 — The deflected shape [mm] and the reaction forces [KN/m] with the default mesh

Figure 1.3.3 — The internal forces; M, — M, — M., [kNm/m]
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2. Second order analysis

2.1 A column with vertical and horizontal loads

We would like to analyze the following column (see Fig. 2.1.1) with second order theory. First
of all we make a hand calculation with third order theory according to Ref. [6] and [8] with
stability functions. After this step we compare the results with FEM-Design. In this moment we
need to consider that in FEM-Design second order analysis is implemented and the hand
calulation will be based on third order theory therefore the final results won't be exactly the
same. By the FEM-Design calulation we split the column into 3 bar elements thus the finite
element number of the bars was 3 for more precise results.

The input parameters:

Elastic modulus E =30 GPa

Normal force P=2468 kN

Horizontal load q=10 kN/m

Cross section 0.2 m x 0.4 m (rectangle)
Second moment of inertia in the relevant direction [=0.0002667 m*
Column length L=4m

c—
~

A

Q°E“

F YYVYVYVYVYVYYVY

/

N

LN

Figure 2.1.1 — The column with vertical and horizontal loads

According to Ref. [6] and [8] first of all we need to calculate the following assistant quantities:

P P 2468 0500
p_P__ 2 [ 2 S
E | 1m"El °30000000-0.0002667
e 42
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The constants based on this value for the appropriate stability functions:
§=3.294 ; ¢=0.666 ; f=1.104

With these values the bending moments and the shear forces based on third order theory and
FEM-Design calculation:

gL’ 10-4°

Mclamped:f(1+c) 12

=1.104(1+0.666) =24.52kNm M o mppsetampea= 25-55 kNm

Mroller = 00 kNm M2ndFEMroller = 00 kNm

(qL):[H 1.104(1+0.666) ](10-4):26.13kN

= +
Vclamped [ 6 6 2

V ndrevtciampea = 26.38 kN

qL):ll ~ 1.104(16+0.666)]( 102-4):13_871(N

VanFEMroller = 1 3 : 6 1 kNm

The differences are less than 5 %.

=
X
o
S
= 1500 — 13.61—= —
=2 \ \ AN

b A \ \

=4 \\ AN *\\
— 3 \\ \\L )
_ N \ \ \
- \ . 116.29
N J11.12
. -\ J N —
_ \ / \ 7
- \ / /
= - —/ [ (—
= \ / S/
~ A / \\ p /
) p \ )
B Y, \\ S
= e E— |
2 \ e A\ e
2 | \ 2499 -19.96 < b —Hp————— 2638 2555 4

Figure 2.1.2 — The shear [kKN] and bending moment [KNm] diagram with I*' and 2" order theory
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_|‘€§_ 4’_6;

Figure 2.1.3 — The lateral translations with 1" and 2" order theory
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2.2 A plate with in-plane and out-of-plane loads

In this chapter we will analyze a rectangular plate with single supported four edges. The load is
a specific normal force at the shorter edge and a lateral distributed total load perpendicular to the
plate (see Fig. 2.2.1). The displacement and the bending moment are the question based on a 2™
order analysis. First of all we calculate the results with analytical solution and then we compare
the results with FE calculations.

In this case the material and the geometric properties are the following:

The thickness of the plate h=0.05m

The dimensions of the plate a=8m;b=6m
The elastic modulus E =210 GPa
Poisson's ratio v=0.3

The specific normal force Nx= 1000 kN/m
The lateral distributed load q. = 10 kN/m?

Figure 2.2.1 — The single supported edges, the lateral distributed load and the specific normal force

The maximum displacement and moments based on the 1* order linear calculation:

w, =3538mm , m _1gosKNm s ekNm 3 egKNm

X, max , max Xy, max
m Y m Y

In Chapter 3.2 the critical specific normal force for this example is:

N, =2860<N
m

If the applied specific normal force is not so close to the critical value (now it is lower than the
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half of the critical value) we can assume the second order displacements and internal forces
based on the linear solutions with the following formulas (with blue highlight we indicated the
results of the FE calculation):

1 1
W e 204 =W max N =35.38 1_100 =5441mm |, W e, 2nd  pEM = 0469 Mm
= 2860

0
1 1 kNm kNm
= =18.05 =27.76 —— =28.50——
mx,max,an mx,max 1 } Nx 1_ 1000 m s mx,max,an,FEM m
N, 2860
1 1 kNm kNm
= =25.62 =39.40 1 =40.30 1
my,max,an my,max 1_ Nx 1_1000 m ’ my,max,2nd,FEM m
N, 2860

kNm

1 1 kNm
mxy,maX,an:mxy,max :1368 :2104— mxy’max,an,FEM=20.53—
N, 1000 m —
N 2860

The differences are less than 3 %.

Figure 2.2.2 shows the problem in FEM-Design with the default mesh.

\\\\\ >;E
Figure 2.2.2 — The single supported slab with in-plane and out-of-plane loads

The following figures show the moment distribution in the plate and the displacements with
FEM-Design according to 1 and 2™ order theory.
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Figure 2.2.3 — The m, [KNm/m] moment with I*' and 2" order analysis

Figure 2.2.4 — The m, [KNm/m] moment with I* and 2" order analysis

Figure 2.2.5 — The m,, [KNm/m] moment with I* and 2" order analysis
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Figure 2.2.6 — The vertical translation [mm] with I* and 2" order analysis
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3. Stability analysis

3.1 Flexural buckling analysis of a beam modell with different boundary
conditions

The cross section is a rectangular section see Fig. 3.1.1
The material C20/25 concrete
The elastic modulus E =30000 GPa
The second moment of inertia about the weak axis LL,=2.667"10"* m*
The length of the column L=4m

The boundary conditions see Fig. 3.1.1

lﬂ% foTa

—-
b=0.4 m

=4 m

L

a=0.2 E

N

N
177777777

Figure 3.1.1 — The buckling problem with the different boundary conditions and the cross section

The critical load parameters according to the Euler's theory are as follows and next to the
analytical solution [1] the relevant results of the FEM-Design calculation can be seen.

Pinned-pinned boundary condition:

_n’El

crl 2
L

F —4934.8kN F e =4910.9kN

Fixed-pinned boundary condition:
2
n El,
=———=10094.1kN F =9974.6 kN
cr? (06992L)2 crFEM?2
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Fixed-fixed boundary condition:
_T’El,

F
“(0.5L)

—19739.2kN F o es=19318.7kN

Fixed-free boundary condition:

T’E1l
= 2=1233.7kN F s =1233.1kN

F = =
crd (2L)2

The difference between the two calculations are less than 3% but keep in mind that FEM-Design
considers the shear deformation therefore we can be sure that the Euler's results give higher
critical values. Fig. 3.1.2 shows the first mode shapes of the problem with the different
boundary conditions.

| & |
T [

1
Waal
17

v

Figure 3.1.2 — The buckling mode shapes for different boundary conditions
pinned-pinned; fixed-pinned; fixed-fixed; fixed-free
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3.2 Buckling analysis of a plate with shell modell

In this chapter we will analyze a rectangular plate with single supported four edges. The load is
a specific normal force at the shorter edge (see Fig. 3.2.1). The critical force parameters are the
questions due to this edge load, therefore it is a stability problem of a plate.

In this case the material and the geometric properties are the following:

The thickness of the plate h=0.05m

The dimensions of the plate a=8m;b=6m
The elastic modulus E =210 GPa
Poisson's ratio v=0.73

The solutions of the differential equation of the plate buckling problem are as follows [6]:

En
12(1-v?)

b’ ’

2

2 2
)

m=1,2,3... , n=1,2,3...
a mb

Figure 3.2.1 — The single supported edges and the specific normal force

Figure 3.2.2 shows the problem in FEM-Design with the default mesh.
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——

Figure 3.2.2 — The stability problem of a plate with single supported edges

According to the analytical solution the first five critical load parameters are:

, ( 210000000-0.05° )

1-6 18 12(1-0.3%) kN kN
Ne=\5 *1% = =2860.36-— N sy =2862.58 ——
m=2 , n=1

2( 210000000-0.05°
2 2

26 1°8 12(1-0.3°) kN kN
Nch_(T-i_ 62 =309377 E NchEM2:3109'96 E
m=3 , n=1

2(210000000-0.053
2 2

3.6 1°8 12(1-0.3%) kN kN
Nes=|=3 T = =4784.56-~ N gy = 4884.90-—
m=4 , n=1

2(2100000000.053
2 2

46 1°8 12(1-0.3°) kN kN
Noo=| g = =7322.53~~ N s =T655.58 =~
m=3 , n=2

) ( 210000000-0.05°
2 2

3.6 2°8 12(1-0.3%) KN KN

Nm:(?—i_ 3.6 ) 6> =10691.41 E N crpns= 10804-62?

Next to these values we indicated the critical load parameters what were calculated with the
FEM-Design.




Verification Examples FEM-Design 16.0

The difference between the calculations less than 5 %.

Figure 3.2.3 shows the first five stability mode shapes of rectangular single supported plate.

Figure 3.2.3 — The first five stability mode shdpe of the described problem
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3.3 Lateral torsional buckling of an I section with shell modell

The purpose of this example is calculate the lateral torsional critical moment of the following
simple supported beam (see Fig. 3.3.1).

¢ Y

L=10m
# #

Figure 3.3.1 — The static frame of a simple supported beam loaded with bending moments of both ends

The length of the beam is L=10m
The cross section see Fig. 3.3.2
The warping constant of the section I,= 125841 cm®
The St. Venant torsional inertia I,=15.34 cm*
The minor axis second moment of area I,=602.7 cm*
The elastic modulus E =210 GPa
The shear modulus G =80.77 GPa
§

30.00 cm

[ |

Figure 3.3.2 — The dimensions of the double symmetric cross section

In this case the critical moment can be calculated with the following formula based on the
analytical solution [6]:
7°El. |1, L*GI,
o 2 -+ 2
L I. n°EI

M

z

=4328 kNcm

. =Jr2-21000-602.7\/125841+10002-8077-15.34
: 1000 602.7  7.21000-602.7

24
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In FEM-Design a shell modell was built to analyze this problem. The bending moments in the
shell model were considered with line loads at the end of the flanges (see Fig. 3.3.3).

The supports provides the simple supported beam effects with a fork support for the shell model
(see Fig. 3.3.3).

Figure 3.3.3 — The FEM model with the supports and the loads (moments) at the ends

From the FEM-Design stability calculation the critical moment value for this lateral torsional
buckling problem is:

M = 4363kNcem

The critical shape is in Fig 3.3.4. The finite element mesh size was provided based on the
automatic mesh generator of FEM-Design.

Figure 3.3.4 — The critical mode shape of the problem

The difference between the two calculated critical moments is less than 1%.
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3.4 Lateral torsional buckling of a cantilever with elongated rectangle section

The purpose of this example is calculate the critical force at the end of a cantilever beam (see
Fig. 3.4.1). If the load is increasing the state of the cantilever will be unstable due to lateral
torsional buckling.

L N

Figure 3.4.1 — The cantilever beam with concentrated load

The input parameters:

The length of the beam is L=10m

The cross section t =40 mm; h = 438 mm; see Fig. 3.4.1
The St. Venant torsional inertia I,= 8806246 mm*

The minor axis second moment of area I,=2336000 mm*

The elastic modulus E =210 GPa

The shear modulus G =280.77 GPa

In this case (elongated rectangle cross section with cantilever boundary condition) the critical
concentrated force at the end can be calculated with the following formula based on analytical
solution:

P

cr

_4.01E12\/G1t
2 VEL

=23687N=23.69kN

p _4.01:210000-2336000 \/ 807708806246
¢ 10000° 210000-2336000
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In FEM-Design a shell modell was built to analyze this problem. The concentrated load at the
end of the cantilever was considered at the top of the beam (see Fig. 3.4.2).

Figure 3.4.2 — The FE model of the cantilever beam with the default mesh

With the FEM-Design stability calculation the critical concentrated force value for this lateral
torsional buckling problem is:

P o= 24.00kN

The critical shape is in Fig 3.4.3. The finite element mesh size was provided based on the
automatic mesh generator of FEM-Design.

Figure 3.4.3 — The critical mode shape of the problem

The difference between the two calculated critical load parameters is less than 2%.
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4. Calculation of eigenfrequencies with linear dynamic theory

4.1 Continuous mass distribution on a cantilever column

Column height H=4m
The cross section square with 0.4 m edge
The second moment of inertia [=0.002133 m*
The area of the cross section A=0.16 m*
The shear correction factor p=5/6=0.8333
The elastic modulus E =30 GPa
The shear modulus G=12.5 GPa
The specific self-weight of the column v =25 kN/m?
The mass of the column m=1.631t

g |

=

=

=

2

2l =

gl T

) T

g

=

£

=

3

Figure 4.1.1 — The cantilevg;ﬂ WVZh continuous mass distribution

Based on the analytical solution [4] the angular frequencies for this case is:

El
Wp=Up\|~— 3

Tz 3 Up=3.52;5u,,=22.03; uy=61.7

if only the bending deformations are considered.

The angular frequencies are [4]:
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wsz‘u&\/% ; Ug=05mu,=15r;u,;=25r

if only the shear deformations are considered.

Based on these two equations (considering bending and shear deformation) using the Foppl
theorem the angular frequency for a continuous mass distribution column is:

1.1

w, wWp Wg

Based on the given equations the first three angular frequencies separately for bending and shear
deformations are:

w3,=3.52\/30000000'0;002133 e 16)
16-4 s
%2:22.03\/30000000-0.0302133:545.41
16314 s
v, —617 \/ 30000000-0.002133 _ 5 5 1
1.631-4 S
0.8333-12500000-0.16 1
~0.5 —793.91
Dsi ”\/ 1.631-4 s
0.8333-12500000-0.16 1
—1. —2381.81
@s2 5”\/ 1.631-4 3818
0.8333-12500000-0.16 1
=25 ~3969.6 L
Dss ”\/ 16314 s

According to the Foppl theorem the resultant first three angular frequencies of the problem are:

0, =86.639% | w =531.641 | o =1425.81
S S S

And based on these results the first three eigenfrequencies are (f = w/(27)):

fn,:13.789% , fn2=84.613§ , fn3=226.923%
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In FEM-Design to consider the continuous mass distribution 200 beam elements were used for
the cantilever column. The first three planar mode shapes are as follows according to the FE
calculation:

Fon=137801 7 836361 | f,. =2233261
S S 3 S

The first three mode shapes can be seen in Fig. 4.1.2.

Figure 4.1.2 — The first three mode shapes for the cantilever with continuous mass distribution

The differences between the analytical and FE solutions are less than 2 %.




Verification Examples FEM-Design 16.0

4.2 Free vibration shapes of a clamped circular plate due to its self-weight

In the next example we will analyze a circular clamped plate. The eigenfrequencies are the
question due to the self-weight of the slab.

In this case the material and the geometric properties are the following:

The thickness of the plate h=0.05m
The radius of the circular plate R=5m

The elastic modulus E =210 GPa
Poisson's ratio v=0.3

The density p="7.85t/m’

The solution of the dynamic differential equation for the first two angular frequencies of a
clamped circular plate are [5]:

ENW
2 12(1—v2
a)nm:%ﬁmz (ph ) , B,=1015 | B,=1468

Figure 4.2.1 shows the problem in FEM-Design with the clamped edges and with the default
mesh.

Figure 4.2.1 — The clamped circular plate and the default finite element mesh

According to the analytical solution the first two angular frequencies are:
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210000000-0.05°
12(1-0.3%)
7.85-0.05

—31.831 | f]0=5.066% , waEM=5.129%
S

2 (
a)m:%l.OISZ

210000000-0.05°
12(1-0.3%)
7.85-0.05

1 1
— =10.731—
s s fIIFEM s

0, =T 1.468° =66.58% . f,=10.60

Based on the angular frequencies we can calculate the eigenfrequencies in a very easy way. Next
to these values we indicated the eigenfrequencies what were calculated with the FEM-Design.

The difference between the calculations less than 2 %.

Figure 4.2.2 shows the first two vibration mode shapes of the circular clamped plate.

Figure 4.2.2 — The first two vibration shape mode of a clamped circular plate
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5. Seismic calculation

5.1 Lateral force method with linear shape distribution on a cantilever

Inputs:
Column height H=10m
The cross section square with 0.4 m edge
The second moment of inertia [=0.002133 m*
The elastic modulus E=31GPa
The concentrated mass points 10 pieces of 1.0 t (see Fig. 5.1.1)
The total mass m=10.0t

000 t 1.000 t

é ' 1.198 kN -1.198

1.000 t % 1.000 t
N 1.078 kN -2.276
1.0b0 t N 1& 0.958 kN -3.234
1.000 t % 1.000 t
N @ 0.838 kN -4.073
1_01&1 1@ 0.719 kN -4.791
1_01L7 é 1&‘5 0.599 kN -5.390
1_012;1 1& 0.479 kN -5.869
1.000 t g 000 t
0.359 kN -

C\ﬁ: O 6.229
1&: 0 0.240 kN -6.468
1&;: 0.120 kN -6.588

b 0.000 kN D

Figure 5.1.1 — The cantilever column with the concentrated mass points, the first vibration shape [T=0.765 s],
the equivalent forces [kN], the shear force diagram [kN] and the bending moment diagram [kKNm] with FEM-
Design

First of all based on a hand calculation we determine the first fundamental period:

The first fundamental period of a cantilever column (length H) with a concentrated mass at the
end (m mass) and EI bending stiffness [4]:

2

T=—2L_
\/ 3El
m.]—[.3




Verification Examples FEM-Design 16.0

The fundamental period separately for the mass points from bottom to top:

=0.01411s ; T,= 27 —0.03990s ;
\/3 31000000 0.0021333 \/3~31000000~0.0021333
1-2°
=0.07330s ; T,= 2 =0.1129s ;
\/3 31000000 0 0021333 \/3-310000000.0021333
1-4°
=0.1577s ; T,= 2 =0.2073s ;
\/3 31000000 0.0021333 \/3-310000000.0021333
1-6°
=0.2613s ; T,= 2 =0.3192s ;
\/3 31000000 0.0021333 \/331000000-0.0021333
1-8°
T,= 2 =0.3809s ; T,,= 27 —0.4461s .
\/3 :31000000-0.0021333 \/3-31000000-0.0021333
1-9° 1-10°

The approximated period based on these values according to the Dunkerley summary and the
result of FE calculation:

10
C=\/ D> T7=0.7758s Ty, =0.765s
i=1

The difference between the hand calculation and FEM-Design calculation is less than 2%, for
further information on the period calculation see Chapter 4.

The base shear force according to the fundamental period of vibration (see Fig. 5.1.1) and the
response spectrum (see Fig. 5.1.2):

F\,=S,(T,)m 2=0.6588-10-1.0=6.588 kN

We considered the response acceleration based on the period from FE calculation to get a more
comparable results at the end. Thus the equivalent forces on the different point masses are:

zZ.m. zZ.m.
=6.588 — =6. —
bzz m; 1-1+2-1+3-1+4-1+5-1+6-1+7-1+8-1+9-1+10-1 55
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The equivalent forces from the bottom to the top on each point mass:

F,=0.120kN ; F,=0240kN ; F,=0359kN ; F,=0479kN ; F,=0.599kN ;
F,=0.719kN ; F,=0838kN ; F,=0.958kN ; F,=1078kN ; F,,=1.198kN

These forces are identical with the FEM-Design calculation and the shear force and bending
moment diagrams are also identical with the hand calculation.

& 5d [m/s2]

0.000, 0.000

il

Figure 5.1.2 — The response spectrum [T = 0.765 s; Sq= 0.6588 m/s’]
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5.2 Lateral force method with fundamental mode shape distribution on a

cantilever

Inputs:

Column height

H=10m

The cross section

square with 0.4 m edge

The second moment of inertia

[=0.002133 m*

The elastic modulus

E =31 GPa

The concentrated mass points

10 pieces of 1.0 t (see Fig. 5.1.1)

The total mass

,_.
-

(Q
&9

10 [N 10 [Y 100 [N 100 [N 100 [S 100 [~ 100 [N 100 [~ 100 | 10O

1.000 t

577.6

1.000 t 1.000 t

496.9

1.000 t

,_.
-

416.8

I

1.040 t

,_.
-

338.4
1.000 t 1.000 t
(‘\ﬁ {] 263.3
1.000 t g 1.040 t 193.4
1.000 t 1.000 t 130_6

1(\‘ ‘A 77.4
1(‘\‘ 362
1@‘ ! 9.5

—t4

L)

The base shear force according to the fundamental period of vibration (see Fig. 5.2.1) and the

response spectrum (see Fig. 5.2.2):

F,=5,(T )m2=0.6588-10-1.0=6.588kN

We considered the response acceleration based on the period from FE calculation to get a more

m=10.0t

498 kN -1.498 0.00
1285 kN -2.787 1.50

1081 kN -3.868 4.29

0.878 kN -4.746 8.15

0.683kN  -5.429 12.90
0.501kN  -5.930 18.33

0.339 kN -6.269 \24.26
0201kN g 470 \\30.53
0.094kN 53 \37.00
0.025 kN 6.588 \\43.56
0.000 kN b _@Q 50 15

Figure 5.2.1 — The cantilever column with the concentrated mass points, the first vibration shape with
the value of the eigenvector [T=0.765 s], the equivalent forces [kN], the shear force diagram [kN] and
the bending moment diagram [KNm] with FEM-Design

comparable results at the end. Thus the equivalent forces on the different point masses are:
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S

m;
Zsimi

F,=F,

Si 7, =6.588 L

=0.588 9.5-1+36.2-1+77.4-1+130.6-1+193.4-1+ 263.3-1+338.4-1+416.8-1+496.9-1+577.6-1 2540.1

The equivalent forces from the bottom to the top on each point mass:

F,=0.0246kN ; F,=0.0939kN ; F,=0201kN ; F,=0339kN ; F,=0.502kN ;
F,=0.683kN ; F,=0878kN ; F,=1.081kN ; F,—1289kN ; F,=1498kN

These forces are identical with the FEM-Design calculation and the shear force and bending
moment diagrams are also identical with the hand calculation.

k 5d m/s2]

0.000, 0.000 Bl

-

Figure 5.2.2 — The response spectrum [T = 0.765 s; S4= 0.6588 m/s’]




Verification Examples FEM-Design 16.0

5.3 Modal analysis of a concrete frame building

In this chapter we show a worked example for modal analysis on a concrete frame building
according to EN 1998-1:2008 with hand calculation and compare the results with FEM-Design.
This example is partly based on [4]. The geometry, the dimensions, the material and the bracing
system are in Fig. 5.3.1-3 and in the following table.

Inputs:
Column height/Total height h=32m; H=23.2=64m
The cross sections Columns: 30/30 cm; Beams: 30/50 cm
The second moment of inertia I.=0.000675 m*; I, = 0.003125 m*
The elastic modulus E =28.80 GPa
The concentrated mass points 12 pieces of 13.358 t on 1* storey and

12 pieces of 11.268 t on 2™ storey
(see Fig. 5.3.2)

The total mass 1* storey: m;=160.3 t
2™ storey: my= 135.2 t
total mass: M =295.5t

Reduction factor for elastic modulus a=0.5

considering the cracking according to EN 1998-

1:2008

Behaviour factors q=1.5,qa=1.5
Accidental torsional effect do not considered & =0.05 (damping factor)

e —

4\/\I~/ [

I— |% | -l- ey
L% L > B
| 9

Figure 5.3.1 — The concrete frame building with the columns and beams

38
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The first exercise is the determination of the fundamental periods and mode shapes. There are
several hand calculation modes to get these values but in this chapter the details of the modal
analysis are important therefore we considered the first two fundamental periods based on FEM-
Design calculation (see Fig. 5.3.5). See the details and example on the eigenfrequency
calculation in Chapter 4.

The dead loads and the live loads are considered in the mass points (see Fig. 5.3.2).

13.358

Figure 5.3.2 — The frame building with the masses and bracings

3.20

3.20

6.00

Figure 5.3.3 — The side view of the building
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Type oo 1 A & 5d [m/s2]
Ground ... B - 0.150, 1.570

Figure 5.3.4 — The considered design response specra according to EN 1998-1:2008

0

Figure 5.3.5 — The first two fundamental mode shapes [- =0.704 s; T,=0.252s

According to the fundamental periods in Fig. 5.3.5 the response accelerations from Fig. 5.3.4
are:

m
T/=0704s  S,=11155

T,=0252s S,=157%
N

The second step is to calculate the effective modal masses based on this formula:

. (d>iTmL)2
m =——
"0 'mo,
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During the hand calculation we assume that the structure is a two degrees of freedom system in
the x direction with the two storeys, because the first two modal shapes are in the same plane
see Fig. 5.3.5. Thus we only consider the seismic loads in one direction because in this way the
hand calculation is more comprehensible.

o el )

m= Lomasr . 223 _g) 0,
(409 73.6] 1603 409 M 2955
' 135 736
(67.6 —44.5][1693 O |1 )
. 0 135.2]| 1 m, 2323
= =23.23t 5 T=2222-79%
160.3 67.6
67.6 —44.5
[ ]l 1352” 445]

According to the assumption of a two degrees of freedom system the sum of the effective modal
masses is equal to the total mass:

m; m, 2723 2323
My M 2720 | 2229 14000
M M 2955 2955 %

Calculation of the base shear forces:

=S_,m,=1.570-23.23=36.5kN

The equivalent forces come from this formula:

The equivalent forces at the storeys respect to the mode shapes considering the mentioned two
degrees of freedom model:

1603 0 |1
[40.9 73.6][ ” ]
_[160.3 0 ”40,9 0 1352]1
=

0 1352]73.6
(409 73_6]l16o.3 0 ][40.9]

_[120.6
1'115_[183.0]1{1\1

0 135.2]|73.6
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[67.6 —44.5][1603 0 ”1]

0 1352
—|1603 0 |['67.6 U s70=| 8198 |4y
0 135.2 || —44.5 (67.6 —44.5] 160.3 0 67.6 —44.52
' Lo 1352)[-445

The equivalent forces on one frame from the six (see Fig. 5.3.1):

pﬂ:[120.6/6]:[20.10]kN

183.0/6] |30.50
p, | 81:98/6 ][ 13.66 |,
~44.52/6] | ~7.420

The shear forces between the storeys respect to the two different mode shapes:

v :[20.1+30.5]:[50.6]kN v :[13.66—7.42]:[ 6.24 ]kN
"lo30s 30.5 o742 ~7.42

The shear forces in the columns respect to the two different mode shapes:

v [ 50-6/2|_[2530] 0y [ 62472 ][ 3.13 |y
30.5/2] [15.25 ~7.42/2] |-3.71

The bending moments in the columns respect to the two different mode shapes from the relevant
shear forces (by the hand calculation we assumed zero bending moment points in the middle of
the columns):

M, = 25.30-3.2/2|_| 40.48 KNm M= 3.13-3.2/2 |_| 5.008 KNm
15.25-3.2/2] [24.40 -3.71-3.2/2] |—5.936

The bending moments in the beams respect to the two different mode shapes:

M. =|4048+24.40|_[64.88 )\ M. —|3-008—5.936|_[ =0.928 |\ xin
bt 24.40 24.40 b2 —5.936 —5.936

The SRSS summation on the internal forces:
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\/ﬁ 2 2
[ V2530°+3.13 =[25.49]kN Mc=[¢40.48 +5.008 ]=[40.79]kNm

°_[¢15.252+(—3.71)2] 15.69 V24.402+5.936%| [25.11

M. | V64.88°+(=0.928 =[64.89]kNm
" 1V24.40°+(=5.936)7| [25.11

The CQC summation on the internal forces:

T
—2 0252 558

=T 70704

8 2 1+ 3/2 . 2 3/2
;e E(l+a,)a; _ 8:0.05°(1+0.358)0.358 —0.007588

(1—a, [ +4&8%a,(1+a,,) (1-0.3587 +4-0.05-0.358 (1+0.358)

| 1 0007588
0.007588 1

And based on these values the results of the CQC summation:

V.=

V25.30°+3.13°+2-25.3-3.13:0.007588 :[25.52]
V1525 +(=3.71)+2:15.25-(—3.71)-0.007588 | 115.67

M :-\/40.482+5.0082+2-40.48'5.008-0.007588 =[40.83]kNm
1/24.40°+5.936>+2-24.40-5.936-0.007588 | 12516

M,=

-\/64.882+(—0.928)2+ 2-64.88~(—0.928)-0.007588]:[64.88

kNm
|1/24.40+(—5.936 )" +2-24.40-(—5.936-0.007588) 2507]

The following displacements come from the FEM-Design calculation on the complete frame
structure to ensure the comprehensible final results on the P-A effect.

The displacements at the storeys respect to the two different mode shapes considering the
displacement behaviour factor:

weq| 954 Jors[ 954 [ 1431y o [ 0818 |y 5 0818 [ 1227 ]
17.15 17.15] [25.73 —0.540 ~0.540] [-0.810

Based on these values the storey drifting respect to the two different mode shapes:

A=l a3t pnast oA [ 1227 T2
25.73—14.31] |11.42 —0.810—1.227] |—2.037
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SRSS summation on the story drifting:
V1431741227 :[14.36
)2

A=

mm
V11.42°4+(=2.027 11-60]

P-A effect checking on the total building:

_[(160.3+135.2)9.81|_{2899 |,
135.2:9.81 1326

(m,+m2)g
m,g

en 2102
6-/50.6'+6.24 ]:[305.9]kN

P =

tot

tot

630.52+(—7.42)*| 11883

P4, 2899-14.36
61

— _ 0 P4, 1326-11.60
V.. h  305.9-3200 2

- V,.,h 188.3:3200

=0.0425

=0.0255

After the hand calculation let's see the results from the FEM-Design calculation and compare

them to each other. Fig. 5.3.6 shows the effective modal masses from the FE calculation.
Practically these values coincide with the hand calculation.

Shape no. T mx' mx'
[-] [s] [%] [t]
1 0.704 92.2 272.374
2 0.252 7.8 23.139
Figure 5.3.6 — The first two fundamental periods and the effective
modal masses from FEM-Design

Fig. 5.3.7 and the following table shows the equivalent resultant shear forces and the base shear

forces respect to the first two mode shapes. The differences between the two calculations are
less than 2 %.

Storey 1 equivalent Storey 2 equivalent Base shear force
resultant [kN] resultant [kN] [kN]
Hand FEM Hand FEM Hand FEM
Mode shape 1 120.6 121.9 81.98 81.80 303.6 306.9
Mode shape 2 183.0 185.0 -44.52 —-45.47 36.50 36.33
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Figure 5.3.7 — The equivalent forces respect to the storeys and the base shear forces for the first two mode

Fig. 5.3.8-9 and the following table shows the internal forces after the differenr summation
modes (SRSS and CQC). The differences between the two calculations are less than 2 %.

Column shear force Column bending moment | Beam bending moment
[kN] [kNm] [kNm]
Storey 1 Storey 2 Storey 1 Storey 2 | Storey 1 Storey 2
SRSS 25.49 15.69 40.79 25.11 64.89 25.11
Hand
SRSS (37.18+45.32)/2=
FEM 25.78 15.89 4105 27.51 59.33 27.51
cQC 25.50 15.67 40.83 2516 | 64.88 25.07
Hand
CQC (37.21+45.36)/2=
FEM 25.80 15.86 4129 27.46 59.32 27.46
= [ T[] [ T [ [ —] E‘EEL/L/L’/\\\J\i\i\i — 27.51
15.89 15.89 .-?\,' r\{
— — \
I\ 2336 R 23336 .
T e ™
2578 {2578 {
I I -\ ﬁ\
— » 45,32 R 1 45.32
Figure 5.3.8 — The shear force [kN] and bending moment diagram [KNm] after the SRSS summation rule
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15.86

15.86

25.80

(Wad

Fig. 5.3.10 shows the ® values from FEM-Design. The differences between the hand calculation
and FEM-Design are less than 3 %.

v

25.80

vy

2746 T 27.46
— —L [ | H
Lt — /
/ /
&/ F/
~/ N/
o o
i t
\ \
\\ 4\\
\\23._:,3_]’. .. \\23.337121
_/, /.40 ) J/ L - \L\\\L\ u / .
/e ~ -
7// ~ /
7 A
i il
A B
\
\ \\\
\ \
| \ \
) 45.36 ﬁ*f 45.36

Figure 5.3.9 — The shear force [kN] and bending moment diagram [KNm)] after the CQC summation rule

Storey | Theta x
1 0.0420
2| 0.0253

Figure 5.3.10 — The 0 values at the different storeys from FEM-Design
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6. Calculation considering diaphragms

6.1. A simple calculation with diaphragms

If we apply two diaphragms on the two storeys of the building from Chapter 5.3 then the
eigenfrequencies and the periods will be the same what we indicated in Chapter 5.3.

6.2. The calculation of the shear center

In this example we show that how can we calculate the shear center of a storey based on the
FEM-Design calculation. We analyzed a bottom fixed cantilever structure made of three
concrete shear walls which are connected to each other at the edges (see Fig. 6.2.1). The
diaphragm is applied at the top plane of the structure (see also Fig. 6.2.1 right side). If the height
of the structure is high enough then the shear center will be on the same geometry point where it
should be when we consider the complete cross section of the shear walls as a “thin-walled” “C”
cross section (see Fig. 6.2.1 left side). Therefore we calculate by hand the shear center of the
“C” profile assumed to be a thin-walled cross section then compare the solution what we can get
from FEM-Design calculation with diaphragms.

Secondly we calculate the idealized bending stiffnesses in the principal rigidity directions by
hand and compare the results what we can calculate with FEM-Design results.

Inputs:
Height of the walls H=63m
The thickness of the walls t=20 cm
The width of wall number 1 and 3 wi=ws;=4.0m
The width of wall number 2 w,=6.0m
The applied Young's modulus of concrete E =9.396 GPa

63.00

N~ 03 7
Figure 6.2.1 — The geometry of the braéing core and the height of the bottom fixed structure
(the diaphragm is lying on the top plane, see the red line and hatch)
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First of all lets see Fig. 6.2.2. The applied cross section is a symmetric cross section. In the web
the shear stress distribution comes from the shear formula regarding bending (see Fig. 6.2.2).
Therefore it is a second order polynom. In the flanges the shear stress distribution is linear
according to the thin walled theory. With the resultant of these shear stress ditribution (see Fig.
6.2.2, Vi, V, and V3) the position of the shear center can be calculated based on the statical
(equilibrium) equations.

max

Figure 6.2.2 — The shear stress distribution in a thin-walled cross section if the
shear force acting on the shear center

The shear stress values (see Fig. 6.2.2):
VS 1-(0.2:4-3) kN

T=—r= ; S . =0.6665—
It (026 462° 458 m
+ — 0.2

12 12 12
VS 1:(02:434+0.2:3:1.5) kN

m

12 12 12

"It 0260 4620 458 —0ol
26 402 458 1,

Based on these stresses the resultant in the flanges and in the web:

_TIw,  0.6665-0.2-4
== 2 2

=0.2667kN

szg(rmax—r)wzt-i-r w2t=%(0.9164—0.6665)6-0.2+0.6665-6-0.2=O.9997kN

Respect to the equilibrium (sum of the forces):
V=1kN~V,=0.9997kN
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And also respect to the equilibrium (if the external load is acting on the shear center, see Fig.
6.2.2) the sum of the moments:

Vow,=V,xg

e iwa 0.2667-6
SV, 09997

=1.601m

Thus the shear center is lying on the symmetry axis and it is xs=1.601 m from the web (see Fig.
6.2.2). In FEM-Design the global coordinate system does not coincide with the symmetry axis
of the structure (see Fig. 6.2.1). Therefore we need no transform the results.

Lets be a selected key node at the diaphragm in the global coordinate system (see Fig. 6.2.1):

x,=0m ; y,=0m

Based on the unit forces (1 kN) and moment (1 kNm) on the key node the displacements of the
key node are as follows based on the FEM-Design calculation (see the theory manual
Calculation considering diaphragm chapter also):

According to unit force on key node in X direction:

u,=15852mm  u,=0.72166mm  ¢_=0.29744-10 *rad

According to unit force on key node in Y direction:

u,,=0.72166mm  u, =73314mm  ¢_=0.1032810 "rad

According to unit moment on key node around Z direction:

®..=0.16283-10 rad

Based on these finite element results the global coordinates of the shear center of the diaphragm
are:

—
xo= Xy iy = 02102810 (345
= 0.16283-10

Qo ), 02974410
0.16283-10°

+0.1827m

In FEM-Design the coordinates of the middle point of the web are (see Fig. 6.2.1):
X,,=—4919m ; y ..=+0.894m
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With the distance between these two points we get a comparable solution with the hand
calculation.

¥ sran =\ s % pia) (75— Yoia) = V[ —6.343—(—4.919)  +(0.1827 ~0.894'=1.592m

The difference between FEM and hand calculation is less than 1%.

The gravity center of the cross section (Fig. 6.2.2) can be calculated based on the statical
moments. And of course the gravity center lying on the symmetry axis. The distance of the
gravity center from the web is:

_ S 2(02:4-2)
A 02(4+6+4)

'

x's =1.143m

With the input Young's modulus and with the second moments of inertia the idealized bending
stiffnesses in the principal directions can be calculated by hand.

02:6  462° 458

_ 108 2
T S 2 2 =1.692-10" kNm

EI,=9396-103-(

3 3
024 5(024(2-1.143))+ 822 102.6(1.143)|=4.585-10"kKNm®

E12=9396-103-(2

With the finite element results we can calculate the translations of the shear center according to
the unit forces and moment on the key node (see the former calculation method).

The distances between the shear center and the selected key node are:
Ax=x4—x,=—6.343—0=—6.343m =-6343 mm

A y=ys—y, =+0.1827—0=-+0.1827 m=182.7 mm

The translations of the shear center are as follows:
U =1 . — @ A y=1.5852—0.29744-10"*-182.7=1.5798 mm
Ug =1+ @A x=0.72166+0.29744-10*(—6343)=0.5330 mm
Ugy=t,—@., Ay=0.72166—0.10328-10"*-182.7=0.5330 mm

Ugy=t,,+ @, Ax=7.3314+0.10328-10-(—6343)=0.7803 mm
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Based on these values the translations of the shear center in the principal directions:

2 2
+ p— —
ul:uSm2uSyy+\/(qux2uSyy +usxyz= 1.5798—50.7803+\/( 1.579820.7803 10.5330%=
=1.8463mm
2 2
_+_ J— —_
= U : Ug, _\/( U, - usyy) n quyzz 1.5798 erO.7803 _\/( 1.5798 - 0.7803 10.5330°=

=0.5138 mm

According to these values the angles of the principal rigidity directions:

u,—u _
& 1y =arctan Txysx" =arctan L '8463.5313'5798 =26.57°
u,—u _
O iy =arcCtan Zquysxx =arctan 0.51 3:531?;5798 =—63.43°

The directions coincide with the axes of symmetries (see Fig. 6.2.1-2) which is one of the
principal rigidity direction in this case.

Then with FEM-Design results we can calculate the idealized bending stiffnesses of the
structure:
H’ 63’ 81 nyo2
El = = E 1,15y =1.622-10"kN
M3, 3.(0.5138/1000) LK =

H’ 63’ T a2
El == E Lyppy =4.514-10'kN
M =3 3(1.8463/1000) 2K =

The difference between FEM and hand calculation is less than 4%.




Verification Examples FEM-Design 16.0

7. Calculations considering nonlinear effects

7.1 Uplift calculation

7.1.1 A trusses with limited compression members

In this example a truss will be analyzed. First of all we calculate the normal forces in the truss
members and the maximum deflection for the gived concentrated loads. After this step we
calculate the load multiplier when the vertical truss members reaches its limit compression
bearing capacity what we set. See the inputs in the following table. After the hand calulation we
compare the results with the FEM-Design nonlinear calculation results.

Inputs:
Column height/Span H=20m;L=8.0m
The cross sections KKR 80x80x6
The area of the cross sections A =1652 mm?
The elastic modulus E =210 GPa, steel
The concentrated loads F =40 kN
Limited compression of the vertical truss members P..= 700 kN

| 4 8 12 16

. 3 5 7 9 11 13 15 17
jan)
757777 2 6 10 14
L=8m
AV ﬂv

77777277
¢ sF=1

oF

o0F=1

Figure 7.1.1.1 — The truss with the concentrated loads and with the
virtual loads for the translation claculation
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The normal forces in the truss members based on the hand calculation (without further details)
are:

N,=N,,=—100kN ; N,=N,=0kN ; N,=N,;=+84.85kN ;
N,=N,=N,=N,=—60.00kN ; N,=N,=+60.00kN ;
N,=N,=+2828kN ; N,=N,=—80.00kN ; N,=—40.00kN .

The normal forces in the truss members according to the vertical virtual force (see Fig. 7.1.1.1):

N,=N,,=—05kN ; N,,=N,,,=N,,=0kN ;
N,,=N,;;=N,,=N,,,=+0.7071 kN ;
N,,=N,;=N,,;=N,,,=—05kN ; N,,=N,,,=+0.5kN ;
N,,8=N,,,2=—1.0kN .

The normal forces in the truss members according to the horizontal virtual force (see Fig.
7.1.1.1):

N,,=N,4=N, =N, =+1.0kN ;
NZJ:N2’3:N2,4=N2,5=N2,7=N2,8=N2,9:N2,11=N2,12=N2,13:N2,15=N2,16=N2,I7:OkN )

The hand calculation of the vertical translation at the mid-span with the virtual force method:

e, EA;NéN,,Zl —0.003841 m=3.841 mm

The hand calculation of the horizontal translation at right roller with the virtual force method:

ZN ON,,1,=0.0006918 m=0.6918 mm

"EA

Figure 7.1.1.2 — The truss with the concentrated loads in FEM-Design
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40.0 kN
40.0 kN
40.0 kN
40.0 kN
40.0 kN

-100.00
-100.00

Figure 7.1.1.3 — The reaction forces

< 8 < 8 < 8 < ; <
o o o 2 Q 2 o o o
o o o ' o ' o o o
i Vv [ [y [ ™ M
| \ \ \ \ \
-100.00 D\Q’c) -60.00 -40.00 -60.00 — 10000
@ ® )
R d ()
> z
- . 4 | . o —
= \ \ \ \ \ | g
o 8 = o
= =)
[T=) [T=]
Figure 7.1.1.4 — The normal forces in the truss members

= = = = =

< < < < ]

o o o o (o)

o o o o =

F ¥ ¥ F J

0.69

-3.84

Figure 7.1.1.5 — The vertical translation at the mid-span and the horizontal translation at the right roller [mm]
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The translations and the normal forces in the truss members based on the hand calculation are
identical with the FEM-Design calculation, see Fig. 7.1.1.2-5.

After this step we would like to know the maximum load multiplier when the vertical truss
members reaches its limit compression bearing capacity what we set, P, = 700 kN. The
maximum compression force arises in the side columns, see the hand calculation, N; = (—)100
kN. Therefore the load multiplier based on the hand calcualtion is A = 7.0.

Let's see the FEM-Design uplift calculation considering the limit compression in the vertical
members.

15898677203

Figure 7.1.1.6 — Large nodal displacements when the side truss
members reached the limit compression value [mm]

B " Load combinations ﬁ
Mo MName Type |Factor | Induded load cases | 0K
22 U 7.01 1 Cance

Figure 7.1.1.7 — The two different analyzed load multiplier in FEM-Design

With Agem = 7.00 multiplier the FEM-Design analysis gives the accurate result but with Appm =
7.01 (see Fig. 7.1.1.7) large nodal displacements occurred, see Fig. 7.1.1.6. Thus by this
structure if we neglect the effect of the side members the complete truss became a statically
over-determinated structure. FEM-Design solve this problem with iterative solver due to the fact
that these kind of problems are nonlinear.
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7.1.2 A continuous beam with three supports

In this example we analyse non-linear supports of a beam. Let's consider a continuous beam
with three supports with the following parameters:

Inputs:
Span length L =2 m, total length =2x2 =4 m
The cross sections Rectangle: 120x150 mm
The elastic modulus E =30 GPa, concrete C20/25
Intensity of distributed load (total, partial) p =10 kN/m

In Case I. the distribution of the external load and the nonlinearity of the supports differ from
Case II. See the further details below (Fig. 7.1.2.1 and Fig. 7.1.2.8).

a) Case I.

In this case the distributed load is a total load (Fig. 7.1.2.1). In the first part all of the three
supports behave the same way for compression and tension. In the second part of this case the
middle support only bears tension. We calculate in both cases the deflections, shear forces and
bending moments by hand and compared the results with FEM-Design uplift (nonlinear)
calculations.

| 2.00 2.00

Figure 7.1.2.1 — The beam with three supports and uniform distributed load

In first part of this case the maximum deflection comes from the following formula considering
only the bending deformations in the beam:

_21pL'_21 10-2°
" 384 EI 38430000000-0.12-0.15%/12

=0.0008642 m =0.8642 mm

The relevant results with FEM-Design:

i \ //

—_ —_—

0.8834 0.8834
Figure 7.1.2.2 — The deflection of the beam with three supports (total load)
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The extremums of the shear force without signs:

VJ:%pL:% 10-2=7.5kN ; VZ:%pL=%10-2=12.5kN

The relevant results with FEM-Design:

'75

Figure 7.1.2.3 — The shear diagram of the beam with three supports (total load)

125> -12.5

The extremums of the bending moment without signs:

9 29 2 || 2
M =——plL'=——10-2"=2.812k s M =—pL°==10-2"=5.0kN
midspan 128p 128 0 8 Nm ’ middle 8 p 8 0 5 O m

The relevant results with FEM-Design:

-5.0

Figure 7.1.2.4 — The bending moment diagram of the beam with three supports (total load)

When the middle support only bear tension (second part of this case) basically under the total
vertical load (Fig. 7.1.2.1) the middle support is not active (support nonlinearity). Therefore it
works as a simply supported beam with two supports. The deflection, the shear forces and the
bending moments are the following:

The maximum deflection comes from the following formula considering only the bending
deformations in the beam:

, 5 plL+L) 5 10-(2+2)"
" 384 EI 384 30000000-0.12-0.15°/12

=0.03292m =32.92mm
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The relevant results with FEM-Design:

~_

33103
Figure 7.1.2.5 — The deflection of the beam when the middle support only bear tension (total load)

The maximum of the shear force without sign:

V=2 p(L+L)=210(2+2)=20kN

N | —

The relevant results with FEM-Design:

Figure 7.1.2.6 — The shear diagram of the beam when the middle support only bear tension (total load)

The extremum of the bending moment without sign:

1

mezgp(L+L)2= 10-(2+2)=20kNm

0| —

The relevant results with FEM-Design:

Figure 7.1.2.7 — The bending moment diagram of the beam when the middle support only bear tension (total load)

The differences between the calculated results by hand and by FEM-Design are less than 2%.
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b) Case II.

In this case the distributed load is a partial load (Fig. 7.1.2.8). In the first part all of the three
supports behave the same way for compression and tension. In the second part of this case the
right side support only bears compression. We calculate in both cases the deflections, shear
forces and bending moments by hand and compared the results with FEM-Design calculations.

2.00 2.00 |

Figure 7.1.2.8 — The beam with three supports and uniform partial load

The extremums of the deflection come from the following formulas considering only the
bending deformations in the beam (without signs):

21 (p/Z)L4+ 5 (pl2)L*_21 10/2-2“Jr 5 10/2-2*
me 384 EI 384 EI 384 EI 384 EI

5 (p/12)L 2 (p/2)L? 5 10/2:2° 2 10/2:2"
~ _ _ _ —0.0006173m=0.6173
©win~384  EI 384 EI 384 EI 384 EI m mm

The relevant results with FEM-Design:

=0.001461 m=1.461 mm

0.6295

~_
1.4709

Figure 7.1.2.9 — The deflection of the beam with three supports (partial load)

The extremums of the shear force without signs:

7 7 9 9

=" p1="102=875kN : V,== pL=—10-2=1125kN -
167" 16 SRR T T ’
1 1
— 1 pL="1102=125kN
Vi=1PL=1610 >

The relevant results with FEM-Design:
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1.11.2

~

Figure 7.1.2.10 — The shear diagram of the beam with three supports (partial load)

1
1.2
—5l

The extremums of the bending moment without signs:

M

2 2
(176pL) (176 10'2) 1 1
= = =3.828k - M o =—pL’=—10-2=2.5kN
midspan 2p 210 3 8 8 Nm 9 middle 16 p 16 m

The relevant results with FEM-Design:

Figure 7.1.2.11 — The bending moment diagram of the beam with three supports (partial load)

When the right side support only bear compression (second part of this case) basically under the
partial vertical load (Fig. 7.1.2.8) the right side support is not active (support nonlinearity).
Therefore it works as a simply supported beam with two supports. The deflection, the shear
forces and the bending moments are the following:

The maximum deflection comes from the following formula considering only the bending
deformations in the beam:

o 5 pL_ 5 102
midspan 384 EI 384 EI
o _LlpL_ 1102
Teh oA BT 24 EI

=0.002058 m=2.058 mm

=0.006584 m=6.584 mm
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The relevant results with FEM-Design:

6.584
/

/

~

B | |

2.084

Figure 7.1.2.12 — The deflection of the beam when the right support only bear compression (partial load)

The extremum of the shear force without sign:

10-2=10kN

N | —

V== p(L)=

The relevant results with FEM-Design:

Figure 7.1.2.13 — The shear diagram of the beam when the right support only bear compression (partial load)

The extremum of the bending moment without sign:

M = 10-2°=5.0 kNm

max

pL’=

oo | —
oo —

The relevant results with FEM-Design:

Figure 7.1.2.14 — The bending moment diagram of the beam when the right support only bear compression
(partial load)

The differences between the calculated results by hand and by FEM-Design are less than 2%.
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7.2 Cracked section analysis by reinforced concrete elements

7.2.1 Cracked deflection of a simply supported beam

Inputs:
Span length Lr=7.2m
The cross section Rectangle: b =300 mm; h =450 mm
The elastic modulus of concrete Eun =31.476 GPa, C25/30
The creep factor ¢x=2.35
Effective elastic modulus of concrete Ecetr = Een/(1+@25) = 9.396 GPa
Mean tensile strength fom = 2.565 MPa
Elastic modulus of steel bars E; =200 GPa
Characteristic value of dead load g = 8.5 kN/m
Characteristic value of live load qx = 12.0 kN/m
Live load combination factor v, =0.6
Diameter of the longitudinal reinforcement ¢o; =18 mm
Diameter of the stirrup reinforcement ¢s = 8 mm
Area of longitudinal reinforcement A =5x18/4 = 1272.3 m?
Nominal concrete cover Crom = 20 mm

The cross sectional properties without calculation details:

I. stress stadium second moment of inertia ;= 3.075x10° mm*
II. stress stadium second moment of inertia I;=2.028x10° mm*
L. stress stadium position of neutral axis x; =256.4 mm
II. stress stadium position of neutral axis xp = 197.3 mm

u \ A u"’z"k
u LA ug"

L l. [ X X ] .'
P2 eff v
id id 5918

Figure 7.2.1.1 — The simply supported RC beam
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The calculation of deflection according to EN 1992-1-1:

The load value for the quasi-permanent load combination:
kN
pqp:gk+1/j2qk:8.5+o.6'12: 15.7;

The maximum deflection with cross sectional properties in Stadium 1. (uncracked):

4 4
5 Pply 5 15.7-7.2
= = ~0.01901 m=19.01
VT34 E 1, 384 9396000-0.003075 m i

ceff
The maximum deflection with cross sectional properties in Stadium II. (cracked):

5 pply 5 15.7-7.2°

= = =0.02883 m=28.83
WIT384E, 1, 384 9396000-0.002028 m mm

The maximum bending moment under the quasi-permanent load:

1 2 1 2
Mmax=§pqueﬁ =§15.7-7.2 =101.74kNm

The cracking moment with the mean tensile strength:

1 0.003075
M = L —2565———-"2 —4(0.74kN
o= San =y 0.45—0.2564 o

The interpolation factor considering the mixture of cracked and uncracked behaviour:

M\ 2
g_max[l_o,s(Mn;) ,O]—max[l—O.S(%) ,0]20.9198

This value is almost 1.0, it means that the final deflection will be closer to the cracked deflection
than to the uncracked one.

The final deflection with the aim of interpolation factor:
w,=(1=&)w,,+&w, ,=(1-0.9198)19.01+0.9198-28.83=28.04 mm
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First we modelled the beam with beam elements. In FEM-Design we increased the division
number of the beam finite elements to five to get the more accurate results.

Figure 7.2.1.2 — The cross section of the RC beam in FEM-Design

Fig. 7.2.1.2 shows the applied cross section and reinforcement with the defined input
parameters.

Figure 7.2.1.3 — The deflection of the RC beam in FEM-Design with cracked section analysis

Fig. 7.2.1.3 shows the deflection after the cracked section analysis. The deflection of the beam
model in FEM-Design:

Wy =30.59 mm

The difference is less than 9 %.
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Secondly we modelled the beam with shell finite elements. Fig. 7.2.1.4 shows the applied
specific reinforcement with the defined input parameters with slab.

Figure 7.2.1.4 — The specific reinforcement with the shell model in FEM-Design

il

Figure 7.2.1.5 — The deflection of the RC shell model in FEM-Design with cracked section analysis

Fig. 7.2.1.5 shows the deflection and the finite element mesh after the cracked section analysis.
The deflection of the shell model in FEM-Design:

Wiy =27.0mm

The difference is less than 4 %.
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7.2.2 Cracked deflection of a cantilever beam

Inputs:

Span length

Leﬁv=4m

The cross section

Rectangle: b =300 mm; h =450 mm

The elastic modulus of concrete

Em =31.476 GPa, C25/30

The creep factor

P23 = 2.35

Effective elastic modulus of concrete

Ecetr = Ecn/(1+@28) = 9.396 GPa

Mean tensile strength

fom = 2.565 MPa

Elastic modulus of steel bars E;=200 GPa
Characteristic value of dead load g = 8.5 kN/m
Characteristic value of live load qx = 12.0 kN/m
Live load combination factor v, =0.6
Diameter of the longitudinal reinforcement o= 18 mm
Diameter of the stirrup reinforcement 0s = 8 mm

Area of longitudinal reinforcement

A =5x18t/4=1272.3 m*

Nominal concrete cover

Coom = 20 mm

The cross sectional properties without calculation details:

I. stress stadium second moment of inertia

I,=3.075x10° mm*

II. stress stadium second moment of inertia

Iy=2.028x10° mm*

L. stress stadium position of neutral axis

X = 256.4 mm

II. stress stadium position of neutral axis

X = 197.3 mm

F YYVYVYVYYVYVY

WAk 518

-
l———

g 4
gl
gl

Figure 7.2.2.1 — The cantilever RC beam
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The calculation of deflection according to EN 1992-1-1:

The load value for the quasi-permanent load combination:
kN
pqp:gk+1/j2qk:8.5+o.6'12: 15.7;

The maximum deflection with cross sectional properties in Stadium 1. (uncracked):

4 4
1 pypLly 1 15.7-4
== =2 =0.01739 m=17.39
YRTRTE 1, 89396000-0.003075 m i

cefff
The maximum deflection with cross sectional properties in Stadium II. (cracked):

_1 pqpl‘eff4_l 15.7-4%

= = =0.02637m=26.37
W= E 1, 89396000-0.002028 m mm

The maximum bending moment under the quasi-permanent load:

1 2 1 2
Mmaxzzpqueff =§15.7'4 =125.6kNm

The cracking moment with the mean tensile strength:

1, 0.003075
o= Fem 7= X, 0.45—0.2564 m

The interpolation factor considering the mixture of cracked and uncracked behaviour:

M\ 2
g—max[lo.s(M":x) ,ol—max[lo.s(‘l‘ggé) ,0]=0.9474

This value is almost 1.0, it means that the final deflection will be closer to the cracked deflection
than to the uncracked one.

The final deflection with the aim of interpolation factor:
w,=(1-&)w,,+&w, ,=(1-0.9474)17.39+0.9474-26.37=25.90 mm
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We modelled the beam with beam finite elements. In FEM-Design we increased the division
number of the beam finite elements to five to get the more accurate results.

Figure 7.2.2.2 — The cross section of the RC cantilever in FEM-Design

Fig. 7.2.2.2 shows the applied cross section and reinforcement with the defined input
parameters.

54

Figure 7.2.2.3 — The deflection of the RC cantilever in FEM-Design with cracked section analysis

Fig. 7.2.2.3 shows the deflection after the cracked section analysis. The deflection of the beam
model in FEM-Design:

W gy = 27.54mm

The difference is less than 7 %.
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7.3 Nonlinear soil calculation

This chapter goes beyond the scope of this document, therefore additional informations are
located in:

FEM-Design — Geotechnical modul in 3D, Theoretical background and verification and
validation handbook

http://download.strusoft.com/FEM-Design/inst150x/documents//3dsoilmanual.pdf



http://download.strusoft.com/FEM-Design/inst150x/documents//3dsoilmanual.pdf

FEM-Design 16.0

Verification Examples

8. Cross section editor

8.1 Calculation of a compound cross section

An example for compound cross section is taken from [7] where the authors calculated the cross
sectional properties with the assumption of thin-walled simplifications. The welded cross section
is consisting of U300 and L160x80x12 (DIN) profiles. In the Section Editor the exact cold

rolled geometry was analyzed as it is seen in Figure 8.1.1.

——

—

s I

Figure 8.1.1 — The analyzed cross section

The following table contains the results of the two independent calculations with several cross

sectional properties.

Notation Ref. [1] Section Editor
A [em?] 86.76 86.30
Vyg[cm] 1.210 1.442
zg[cm] 19.20 19.22
y's[cm] 1.39 0.7230
z's[cm] 10.06 10.36
I,[em?] 11379.9 11431.2
L[cm?] 4513.3 4372.9
I.[cm*] 3013.2 3053.5
I,[cm*] 48.83 52.11
I,[cm®] - 203082.0

Table 8.1.1 — The results of the example
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9. Design calculations

9.1 Required reinforcement calculation for a slab

In this example we calculate the required reinforcements of a slab due to elliptic and hyperbolic
bending conditions. First of all the applied reinforcement is orthogonal and then the applied
reinforcement is non-orthogonal. We calculate the required reinforcement with hand calculation
and then compare the results with FEM-Design values.

Inputs:
The thickness h =200 mm
The elastic modulus of concrete E.n =33 GPa, C30/37
The Poisson's ratio of concrete v=0.2
The design value of compressive strength f.a =20 MPa
Elastic modulus of steel bars E; =200 GPa
The design value of yield stress of steel bars fyq = 434.8 MPa
Diameter of the longitudinal reinforcement ¢ =10 mm
Nominal concrete cover ¢x =20 mm; ¢y = 30 mm
Effective heights dx =175 mm; dy = 165 mm

I.) Elliptic bending

In the first case the bending condition is an elliptic bending. In FEM-Design the model is a slab
with statically determinant support system and specific moment loads at its edges for the pure
internal force state (see Fig. 9.2.2.1).

: ;

kl (o]

Figure 9.2.2.1 — The slab with the edge loads for pure stress state




Verification Examples FEM-Design 16.0

Fig. 9.2.2.2 shows the constant internal forces in the slab due to the loads. Fig. 9.2.2.3 shows the
principal moments and their directions based on the FEM-Design calculation. According to the
pure stress state the principal moments and the directions are the same in each elements.

16 8. 6.
16 6.

Figure 9.2.2.2 — The m,, m,, and m,, internal forces in the slab [kKNm]

X,\%':L}XXXXXXXXX
X XX X X X XXX XXX
XXX XX XXX X X XX
XX X X X XX X X X XX
XXX X X X XXX X XX
XXX X X XX XX X XX
X XXX X X XXX XXX
XXX X X XX XX X XX
XXX X X XXX X XXX
XXX X X XXX X X XX
EXXXXXXXXXXXX
O X X X X X X X X X XX

Figure 9.2.2.3 — The m; and m; principal moments and their directions in the slab [kNm]

First of all the reinforcement is orthogonal and the hand calculation and the comparison are the
following:

1. Orthogonal reinforcement (©=90°)

The reinforcement is orthogonal and their directions concide with the local system (x=g,
y=9=n).
The moments in the slab (tensor of the applied moments):

m,=mg=+16kNm/m
m,=my=m,=+8kNm/m

m =msg=me,=+6kNm/m
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The first invariant of the tensor:  m +m =+24kNm/m

The calculation of the principal moments and their directions:

2 2
_+_ — —
m,=mx2my+\/( mxzmy) e 162+8+ 162 31 +6°=19.21KNm/m

m.+m, m.—m, g
m,= —
2 2

+6°=4.79kNm/m

o 16+8_\/(16—8

v 2 2
m,—m _
a,=arctan — x=arctanw=28.15°
m

Xy

Compare these results with Fig. 9.2.2.3. The difference is 0 %.

The design moments (according to [9][10]) if the reinforcement (&) is orthogonal and their
directions concide with the local co-ordinate system (X,y):

Case a)
e g _COSQ L 1=2c0s@ o o c0s 90° +61_2COS900:+22kNm/m
WEETE T  hcosp 00 sing 14+c0s90° sin90°
My =my————tm =g L 16 L i 14kNm/m
I+cosg sSIN@  1+¢0s90°  sin90°

This is a valid solution! Because m,,:+m,,, =+36kNm/m>m_ +m =+24 kNm/m

udn
m,=+22kNm/m  m,, =+14kNm/m

Case b)

mud§:m5+m9—cosw —ma9—1+?COS(p=16+8 c0s 90 —61-’_2C0590 =+10kNm/m
; l—cosgp ~°7 sing 1—c0s90° sin90°

M, =m L ! =8 ! 6 ! =+2kNm/m

‘lI—cosg  “’sing  1-cos90°  sin90°

Invalid solution! Because m, .+ m,,,=+12kNm/m <m +m =+24kNm/m

Case &)
2 2
Myq = Mg — m§9=16—6—=+11.5 kNm/m
Mg 8
m,,=0

Invalid solution! Because m,,:+m,,,=+11.5kNm/m<m +m =+24kNm/m
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Case n)

m,, =0

—_ Me My —M g _ 16-8—6 _ 1575 KNm
T mesin® g +mocos’@—mzosin2¢  16-5in290°+8-c0s’90°—6-sin (2-90°) ~ m

Invalid solution! Because m,, .+ m,,,=+5.75kNm/m<m +m =+24kNm/m

The results of the design moments based on FEM-Design are in Fig. 9.2.2.4 and 9.2.2.5. The
difference between the hand and FE calculation is 0%.

22
22

Figure 9.2.2.4 — The m,q :design moment for elliptic bending with orthogonal reinforcement [KNm]|

Figure 9.2.2.5 — The m.a, design moment for elliptic bending with orthogonal reinforcement [KNm]
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Calculation of the required reinforcement based on the valid design moments:

In x (&) direction:

Sum of the moments:
X X
mud§=fcdxc(dx—?c) ; 22000=2Oxc(175—30) ; X,=6.403mm

Sum of the forces:
X fu=af,q 5 6403-20=a 4348 ; aS§=0.2945mmzlmm=294.5mm2/m

Fig. 9.2.2.6 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%.

29
29

Figure 9.2.2.6 — The a,: required reinforcement at the bottom for elliptic bending with orthogonal
reinforcement [mm?/m]|

In v (n) direction:

Sum of the moments:
X, X,
mudn=fcdxc dy—? ; 14000=20x, 165—7 ; X, =4.298 mm

Sum of the forces:
X fa=a, [ 5 4298-20=a,, 4348 ; asn:O.1977mm2/mm=197.7 mm’/m

Fig. 9.2.2.7 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%.
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19
1

Figure 9.2.2.7 — The ay, required reinforcement at the bottom for elliptic bending with orthogonal
reinforcement [mm?/m)|

Secondly the reinforcement is non-orthogonal and the hand calculation and the comparison are
the following:

2. Non-orthogonal reinforcement (©=75°between & and 1)

The reinforcement is non-orthogonal and the & direction concides with the local x direction.
Thus y=9. The angle between the & directional reinforcement and 1 directional reinforcement is

0=T75°.
The moments in the slab (tensor of the applied moments):
m,=mg=+16kNm/m

m,=my=m,=+8kNm/m
m =msy=+6kNm/m

The first invariant of the tensor: m +m =+24kNm/m

The design moments (according to [9][10]) if the reinforcement (&,1) is non-orthogonal:

Case a)
mud§=m§_m9M+m§91_?’ﬂ:16_8 cos 75 0+6 1_2008;75 =+1735kNm/m
I+cos@ sin @ 1+cos75 sin75
1 1 1 1

m

+mgy——=8 ~+6———=+12.57kNm/m
sm @ 14+cos75 sin 75

This is a valid solution! Because m,, .+m,,, =+29.92kNm/m>m +m =+24kNm/m

M, :=+1735kNm/m  m,, =+12.57kNm/m

=m —_—
w7 ] +cos @
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Case b)

cosQ 1+2cos @ cos 75° _6 1+2cos75°

=t e — ¥ . =16+8 =+9.37kNm/
M e=MeT Mo s 5 sing 1—cos 75° sin 75° e
mudn:mS—_m§9 .1 :8 1 0—6 : 1 0:+4.58kNm/m
I—cos@ sin @ 1—cos75 sin 75

Invalid solution! Because m,;:+m,,,=+13.95kNm/m<m +m =+24kNm/m

Case &)
2 2
mud§=m§—n;f:=l6—%=+ll.5 kNm/m
m,,=0

Invalid solution! Because m,, .+ m,,,=+11.5kNm/m<m +m =+24kNm/m

Casen)
M, =0
o M My —M g _ 16-8—6° _ 7 3gKNm
U mesin’ @ +mgcos’p—meosin2 @ 16-sin’ 75°+ 8- cos’ 75°— 6-sin(2-75°) m

Invalid solution! Because m,;:+m,,,=+7.38kNm/m <m +m =+24 kNm/m

The results of the design moments based on FEM-Design are in Fig. 9.2.2.8 and 9.2.2.9. The
difference between the hand and FE calculation is 0%.

17
17

Figure 9.2.2.8 — The m,q:design moment for elliptic bending with non-orthogonal reinforcement [KNm]|
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1.

Figure 9.2.2.9 — The myq, design moment for elliptic bending with non-orthogonal reinforcement [KNm]

Calculation of the required reinforcement based on the valid design moments:

In x (&) direction:

Sum of the moments:
X X
mud§=fcdxc(dx—j) : 17350=20xc(175—§) ; x,=5.029mm

Sum of the forces:
X fea=ge fra 5 5.029-20=a 4348 ; a,.=02313 mm’/mm=231.3mm*/m

Fig. 9.2.2.10 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%.

233
2

Figure 9.2.2.10 — The ay: required reinforcement at the bottom for elliptic bending with non-orthogonal
reinforcement [mm?/m]|
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In n direction:

Sum of the moments:

X X
mudﬁfcdxc(dy—?”) ; 12570220xc(165—?c) ; X, =3.854mm

Sum of the forces:
X fa=ay [y ; 3.854:20=a, 4348 ; a,=0.1773mm’/mm=177.3mm"/m

Fig. 9.2.2.11 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%.

17
1

Figure 9.2.2.11 — The a,, required reinforcement at the bottom for elliptic bending with non-orthogonal
reinforcement [mm?/m)|
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I1.) Hyperbolic bending

In the second case the bending condition is a hyperbolic bending. In FEM-Design the model is a
slab with statically determinant support system and specific moment loads at its edges for the
pure internal force state (see Fig. 9.2.2.12).

-

B2
ol

Figure 9.2.2.12 — The slab with the edge loads for pure stress state

Fig. 9.2.2.13 shows the constant internal forces in the slab due to the loads. Fig. 9.2.2.14 shows
the principal moments and their directions based on the FEM-Design calculation. According to
the pure stress state the principal moments and the directions are the same in each elements.

Figure 9.2.2.13 — The m,, m,, and m,, internal forces in the slab [kNm]




Verification Examples FEM-Design 16.0

S S S S S
e e e e e e e e e e e e
B S S S S S S o
B S P W W S S o
e e A e e e e e e e e
/\//\/4/4/*/\/1\24//\//\//\//\/
e e e e e e e e e e e
B T S S S e
e e e e e e e e e e e
T R e e e e
L_\stﬂéfl//\//\//\//\//\//\//\//\/
B T P S P S o

Figure 9.2.2.14 — The m, and m; principal moments and their directions in the slab [KNm]

Firstly the reinforcement is orthogonal and the hand calculation and the comparison are the
following:

1. Orthogonal reinforcement

The reinforcement is orthogonal and their directions concide with the local system (x=E,
y=9=m).
The moments in the slab (tensor of the applied moments):

m =m:=+16kNm/m

m =my=m,=—8kNm/m

m =msg=mg,=+6kNm/m

The first invariant of the tensor: m_ +m =+8kNm/m

The calculation of the principal moments and their directions:

m_+m m—m, | > 16+(—8) 16-(=8)\ ,
m,=—"——2+ | +m, = > + > +6°=17.42kNm/m

2 2

2
_mAm,  ([m,—m, 2_16+(—8)_\/ 16—(—8)
" \/( 2 | T T 2

a,=arctan @= arctan 192;—_16= 13.32°

2

+6°=—9.42kNm/m

Compare these results with Fig. 9.2.2.14. The difference is 0 %.

The design moments (according to [9][10]) if the reinforcement (&,1) is non-orthogonal:
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Case a)
myge=mz—mg—SY S 2CSC g c0S90_ (17200590° _ s Nm/m
l1+cos@ sin @ 1+c0s90 sin 90
My, =My ————FMg4 ,1 =-8 ! +6— ! =—2kNm/m
I+cosp  “sing 1+c0s90°  sin90°

Invalid solution! Because their have different signs.

Case b)
—— cosQ _m§91+2cos¢:16_ cos 90 0_61+?cos?0 — +10kNm/m
- l—cos@ sin @ 1—c0s90 sin 90
1 1 1 1
m, =my————Mog——=—8 -6 =—14kNm/m
W 1—cosg *sing 1—c0s90°  sin90°
Invalid solution! Because their have different signs.
Case )
2 2
mudgzms—m§9=16—6—=+20.5kNm/m
i mg _8
m,,=0
This is a valid solution at the bottom!
m,=+20.5kNm/m  m,, =0kNm/m
Case 1)
M, =0
mgmg—még 16-(—8)—6° kNm
mudn: .2 2 - . = . 2 o P ° - o =_1025—
mesin’ @ +mycos’ p—mezysin2¢@  16-sin”90°+(—8)-cos”90°—6-sin(2-90°) m

This is a valid solution at the top!
m,:=0kNm/m  m,, =—10.25kNm/m

The results of the design moments based on FEM-Design are in Fig. 9.2.2.15 and 9.2.2.16. The
difference between the hand and FE calculation is 0%.
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20
20

Figure 9.2.2.15 — The m,, :design moment for hyperbolic bending with orthogonal reinforcement [kKNm]

Figure 9.2.2.16 — The m.a, design moment for hyperbolic bending with orthogonal reinforcement [kNm]

Calculation of the required reinforcement based on the valid design moments:

In x (&) direction at the bottom:

Sum of the moments:
X X
mud§=fcdxc(dx—?c) ; 20500=20xc(175—?c) ; X,=5.959mm

Sum of the forces:
X fw=ae [ 5 5.959-20=a,. 4348 ; aS§=0.2741mm2/mm=274.1mm2/m

Fig. 9.2.2.17 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%.
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27
27

Figure 9.2.2.17 — The ay: required reinforcement at the bottom for hyperbolic bending with orthogonal
reinforcement [mm?/m)|

In v (n) direction at the top:

Sum of the moments:
xC xC
M= I a X, dy—? ; 10250=20x, 165—? ; X,=3.136mm

Sum of the forces:
X fa=a,, [ 3 3136:20=a,, 4348 ; a,,=0.1443mm’/mm=144.3mm’/m

Fig. 9.2.2.18 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%.

14
1

Figure 9.2.2.18 — The a, required reinforcement at the top for hyperbolic bending with orthogonal
reinforcement [mm?/m|
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Secondly the reinforcement is non-orthogonal and the hand calculation and the comparison are
the following:

2. Non-orthogonal reinforcement (9=75°between & and 1)

The reinforcement is non-orthogonal and the & direction concides with the local x direction.
Thus y=39.

The moments in the slab (tensor of the applied moments):
m,=mg=+16kNm/m
m,=my=m,=—8kNm/m
m =mzy=+6kNm/m

The first invariant of the tensor: m +m =+8kNm/m

The design moments (according to the theory book) if the reinforcement (&,n) is orthogonal and
their directions concide with the local co-ordinate system (X,y):

Case a)
Magemme—my—SC_py JZ2CSP g6 g €OSTS | 612200575 _ 50 64 kNm/m
I+cosg sin ¢ 1+cos 75 sin75
mudﬂ:mﬁ?;—l—mg\'? .1 =—8 ! +6 ! =—0.144 kNm/m
I+cos g sin @ l+cos75°  sin75°

Invalid solution! Because their have different signs.

Case b)
——— cos @ _m§91+?coscp:16_ cos 75 _61+?cos75 — 4378 kNm/m
s 1—cos g sin @ 1—cos 75° sin 75°
Myqn =My 1 Mgy .1 =—8 ! -6 ! =—17.01kNm/m
l—cosg sin @ l1—cos75°  sin75°

Invalid solution! Because their have different signs.

Case &)
2 2
My e=Mg— ";lgs = 16—_6—8=+20.5 kNm/m
9
m,,=0

This is a valid solution at the bottom!
m,e=+20.5kNm/m  m,, =0kNm/m

Case n)
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m,, =0
B Me Mg —mg B 16(—8)—6 1440 KNm
Muan= -2 2 . - . 270 2420 . oy
Mmesin @ +mycos” p—megsin2 ¢ 16-sin” 75°+(—8)-cos” 75°—6-sin(2-75°) m
This is a valid solution at the top!
m,=0kNm/m  m,, =—1440kNm/m

The results of the design moments based on FEM-Design are in Fig. 9.2.2.19 and 9.2.2.20. The
difference between the hand and FE calculation is 0%.

20.
20.

Figure 9.2.2.19 — The m,,:design moment for hyperbolic bending with non-orthogonal reinforcement [KNm]

-14.
-1

Figure 9.2.2.20 — The mq, design moment for hyperbolic bending with non-orthogonal reinforcement [kNm]
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Calculation of the required reinforcement based on the valid design moments:

In x (&) direction at the bottom:

Sum of the moments:
X X
mud§=fcdxc(dx—?c) ; 20500=20xc(175—?c) ; X,=5.959mm

Sum of the forces:
X fw=a fra 5 5.959-20=a,. 4348 ; a,.=0.2741 mm’/mm=274.1 mm*/m

Fig. 9.2.2.21 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%.

276.
276.

Figure 9.2.2.21 — The ay: required reinforcement at the bottom for hyperbolic bending with non-orthogonal
reinforcement [mm?/m)|

In n direction at the top:

Sum of the moments:
xC xC
mudn:fcdxc dy—? ; 14400=20x, 165—? ; X,—4.423 mm

Sum of the forces:
X fa=ay, [ 5 4423:20=a,,434.8 ; asn:0.2034mm2/mm=203.4mm2/m

Fig. 9.2.2.22 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%.
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20

2

Figure 9.2.2.22 — The ay, required reinforcement at the top for hyperbolic bending with non-orthogonal
reinforcement [mm?/m)|
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