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In this verification handbook we highlighted the analytical results with green and the finite
element results with blue background for better comparison. The analytical closed formulas
are highlighted with a black frame.

If  the  finite  element  mesh  is  not  mentioned  during  the  example  it  means  that  the
automatically generated mesh was used.
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1. Linear static calculations 

1.1 Beam with two point loading at one-third of its span

Fig. 1.1.1 left side shows the simple supported problem. The loads, the geometric and material
properties are as follows:

Force F = 150 kN

Length L = 6 m

Cross section Steel I beam HEA 300

The second moment of inertia in the relevant direction I1 = 1.8264ˑ10-4 m4

The shear correction factor in the relevant direction ρ2 = 0.21597

The area of the cross section A = 112.53 cm2

Young's modulus E = 210 GPa

Shear modulus G = 80.769 GPa

The deflection of the mid-span based on the hand calculation (based on virtaul force theorem
[1], see Fig. 1.1.1 right side also):
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Figure 1.1.1 – The beam theory and the application of a virtual force
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The first part of this equation comes from the bending deformation and the second part comes
from the consideration of the shear deformation as well, because FEM-Design uses Timoshenko
beam theory (see the Scientific Manual).

The deflection and the bending moment at the mid-span based on the linear static calculation
with three 2-noded beam elements (Fig. 1.1.2 and Fig. 1.1.3): 

eFEM=31.51 mm  and the bending moment M FEM=300 kNm  

The theoretical solution in this case (three 2-noded beam elements) must be equal to the finite
element solution because with three beam elements the shape functions order coincides with the
order of the theoretical function of the deflection (the solution of the differtial equation).

Therefore the difference between the results of the two calculations is zero.

5

Figure 1.1.2 – The finite element model

Figure 1.1.3 – The mid-span deflection [mm]
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1.2 Calculation of a circular plate with concentrated force at its center

In this chapter a circular steel plate with a concentrated force at its center will be analyzed. First
of all the maximum deflection (translation) of the plate will be calculated at its center and then
the bending moments in the plate will be presented. 

Two different boundary conditions will be applied at the edge of the plate. In the first case the
edge is clamped (Case I.) and in the second case is simply supported (Case II.), see Fig. 1.2.1.

The input parameters are as follows:

 

The concentrated force P = 10 kN

The thickness of the plate h = 0.05 m

The radius of the circular plate R = 5 m

The elastic modulus E = 210 GPa 

The Poisson's ratio ν = 0.3

The ratio between the diameter and the thickness is 2R/h = 200. It means that based on the
geometry the shear deformation only have negligible effects on the maximum deflections. It is
important  because  FEM-Design  uses  the  Mindlin  plate  theory  (considering  the  shear
deformation, see Scientific Manual for more details), but in this case the solution of Kirchhoff's
plate theory and the finite element result must be close to each other based on the mentioned
ratio.

The analytical solution of Kirchhoff's plate theory is given in a closed form [2][3]. 

6

Figure 1.2.1 – Clamped (Case I.) and simply supported (Case II.) circular plate with concentrated force
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Case I.:

For the clamped case the maximum deflection at the center is:

w cl=
P R2

16π ( E h3

12(1−ν 2
))

The reaction force at the edge:

Qr=
P

2π R

And the bending moment in the radial direction at the edge:

M cl=
P

4π

With  the  given  input  parameters  the  results  based  on  the  analytical  and  the  finite  element
solutions (with the default finite element mesh size, see Fig. 1.2.2) are:

w cl=
10⋅52

16π (210000000⋅0.053

12(1−0.32
) )

=0.002069m=2.069mm w clFEM=2.04 mm

Qr=
10

2π 5
=0.318

kN
m

QrFEM=0.318
kN
m

M cl=
P

4π
=

10
4π

=0.796
kNm

m
M clFEM=0.796

kNm
m
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Figure 1.2.2 – The clamped (Case I.) and the simply supported (Case II.) plate with the default mesh
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Case II.:

For the simply supported case the maximum deflection in the center is:

w ss=
P R2

16π ( E h3

12(1−ν 2
))
(3+ν

1+ν )

The reaction force at the edge:

Qr=
P

2π R

With  the  given  input  parameters  the  results  based  on  the  analytical  and  the  finite  element
solutions (with the default finite element mesh size, see Fig. 1.2.2) are:

w ss=
10⋅52

16π (210000000⋅0.053

12(1−0.32
) )

(3+0.3
1+0.3)=0.005252 m=5.252 mm w ssFEM=5.00 mm

Qr=
10

2π 5
=0.318 kN /m QrFEM=0.318

kN
m

Fig. 1.2.3 shows the two deflected shape in side view. The different boundary conditions are
obvious based on the two different displacement shape. The differences between the analytical
solutions and finite element solutions are less than 5% but the results could be more accurate if
the applied mesh is more dense than the default size. 

Based on the analytical solution the bending moments in plates under concentrated loads are
infinite. It means that if more and more dense mesh will be applied the bending moment under
the concentrated load will be greater and greater. Thus the following diagram and table (Fig.
1.2.4 and Table 1.2.1) shows the convergence analysis of Case I. respect to the deflection and
bending moment. The deflection converges to the analytical solution (wcl  = 2.07 mm) and the
bending moment converges to infinite.

8

Figure 1.2.3 – The deflected shape of Case I. (clamped) and Case II. (simply supported) with the default mesh
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Figure 1.2.4 – Convergence analysis regarding to deflection and bending moment
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Table 1.2.1 – The convergence analysis

Average element size [m]

341 2,034 2,73 0,5
533 2,057 3,91 0,4
957 2,060 3,62 0,3
2035 2,068 4,33 0,2
7994 2,072 5,49 0,1
31719 2,073 6,40 0,05
31772 2,075 10,70 Local refinement 1
31812 2,076 14,30 Local refinement 2

Number of elements 
[pcs.]

Deflection 
[mm]

Bending moment 
[kNm/m]
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1.3 A simply supported square plate with uniform load

In this example a simply supported concrete square plate will be analyzed. The external load is a
uniform  distributed  load  (see  Fig.  1.3.1).  We  compare  the  maximum  displacements  and
maximum bending moments of the analytical  solution of Kirchhoff's  plate  theory and finite
element results.

The input parameters are in this table:

The intensity of the uniform load p = 40 kN/m2

The thickness of the plate h = 0.25 m

The edge of the square plate a = 5 m

The elastic modulus E = 30 GPa 

Poisson's ratio ν = 0.2

The ratio between the span and the thickness is a/h = 20. It means that based on the geometry
the shear deformation may have effects on the maximum deflection. It is important because
FEM-Design uses the Mindlin plate theory (considering the shear deformation, see Scientific
Manual for more details), therefore in this case the results of Kirchhoff's theory and the finite
element result could be different from each other due to the effect of shear deformations.

Based on Kirchhoff's plate theory [2][3] the maximum deflection is in the center of the simply
supported square plate and its intensity can be given with the following closed form:

wmax=0.00416
p a4

( E h3

12(1−ν 2
))

10

Figure 1.3.1 – The square plate with simply supported edges, uniform load and default mesh size
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The maximum bending moment in the plate if the Poisson's ratio ν = 0.2:

M max=0.0469 p a2

According to the input parameters and the analytical solutions the results of this problem are the 
following:

The deflection at the center of the plate:

wmax=0.00416
40⋅54

(30000000⋅0.253

12(1−0.22
) )

=0.002556 m=2.556 mm wmaxFEM=2.632 mm

The bending moment at the center of the plate:

M max=0.0469⋅40⋅52
=46.9

kNm
m

M maxFEM=45.97
kNm

m

Next to the analytical solutions the results of the FE calculations are also indicated (see Fig,
1.3.2 and 1.3.3). The difference is less than 3% and it also comes from the fact that FEM-Design
considers the shear deformation also (Mindlin plate theory).

11

Figure 1.3.3 – The internal forces; Mx – My – Mxy [kNm/m]

Figure 1.3.2 – The deflected shape [mm] and the reaction forces [kN/m] with the default mesh 
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2. Second order analysis

2.1 A column with vertical and horizontal loads

We would like to analyze the following column (see Fig. 2.1.1) with second order theory. First
of all we make a hand calculation with third order theory according to Ref. [6] and [8] with
stability functions. After this step we compare the results with FEM-Design. In this moment we
need  to  consider  that  in  FEM-Design  second  order  analysis  is  implemented  and  the  hand
calulation will be based on third order theory therefore the final results won't be exactly the
same. By the FEM-Design calulation we split the column into 3 bar elements thus the finite
element number of the bars was 3 for more precise results.

The input parameters:

Elastic modulus E = 30 GPa

Normal force P = 2468 kN

Horizontal load q = 10 kN/m

Cross section 0.2 m x 0.4 m (rectangle)

Second moment of inertia in the relevant direction I = 0.0002667 m4

Column length L = 4 m

According to Ref. [6] and [8] first of all we need to calculate the following assistant quantities:

ρ=
P
P E

=
P

(π
2 EI
L2 )

=
2468

(π
230000000⋅0.0002667

42 )
=0.500

12

Figure 2.1.1 – The column with vertical and horizontal loads
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The constants based on this value for the appropriate stability functions:

 

s=3.294 ; c=0.666 ; f =1.104

With these values the bending moments and the shear forces based on third order theory and 
FEM-Design calculation:

M clamped= f (1+c)
q L2

12
=1.104(1+0.666)

10⋅42

12
=24.52kNm M 2ndFEMclamped=25.55 kNm

M roller=0.0 kNm M 2ndFEMroller=0.0 kNm

V clamped=[1+ f (1+c )
6 ]( q L

2 )=[1+
1.104(1+0.666)

6 ](10⋅4
2 )=26.13kN

V 2ndFEMclamped=26.38kN

V roller=[1− f (1+c )
6 ](q L

2 )=[1−
1.104 (1+0.666)

6 ](10⋅4
2 )=13.87kN

V 2ndFEMroller=13.61kNm

The differences are less than 5 %.

13

Figure 2.1.2 – The shear [kN] and bending moment [kNm] diagram with 1st and 2nd order theory
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Figure 2.1.3 – The lateral translations with 1st and 2nd order theory
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2.2 A plate with in-plane and out-of-plane loads

In this chapter we will analyze a rectangular plate with single supported four edges. The load is
a specific normal force at the shorter edge and a lateral distributed total load perpendicular to the
plate (see Fig. 2.2.1). The displacement and the bending moment are the question based on a 2 nd

order analysis. First of all we calculate the results with analytical solution and then we compare
the results with FE calculations.

In this case the material and the geometric properties are the following:

The thickness of the plate h = 0.05 m

The dimensions of the plate a = 8 m; b = 6 m

The elastic modulus E = 210 GPa 

Poisson's ratio ν = 0.3

The specific normal force Nx = 1000 kN/m

The lateral distributed load qz = 10 kN/m2

The maximum displacement and moments based on the 1st order linear calculation:

wmax=35.38mm , m x , max=18.05
kNm

m
, m y , max=25.62

kNm
m

, m xy , max=13.68
kNm

m

In Chapter 3.2 the critical specific normal force for this example is:

N cr=2860
kN
m

If the applied specific normal force is not so close to the critical value (now it is lower than the

15

Figure 2.2.1 – The single supported edges, the lateral distributed  load and the specific normal force
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half of the critical value) we can assume the second order displacements and internal forces
based on the linear solutions with the following formulas (with blue highlight we indicated the
results of the FE calculation):

wmax ,2nd=wmax
1

(1− N x

N cr
)
=35.38

1

(1−1000
2860)

=54.41mm , wmax ,2nd , FEM=54.69mm

m x , max ,2nd=mx , max
1

(1− N x

N cr
)
=18.05

1

(1−1000
2860)

=27.76
kNm

m
, m x , max ,2nd , FEM=28.50

kNm
m

m y , max ,2 nd=m y , max
1

(1− N x

N cr
)
=25.62

1

(1−1000
2860)

=39.40
kNm

m
, m y , max ,2 nd , FEM=40.30

kNm
m

m xy , max ,2nd=mxy , max
1

(1− N x

N cr
)
=13.68

1

(1−1000
2860)

=21.04
kNm

m
m xy , max ,2nd , FEM=20.53

kNm
m

The differences are less than 3 %.

Figure 2.2.2 shows the problem in FEM-Design with the default mesh.

The following figures show the moment distribution in the plate and the displacements with
FEM-Design according to 1st and 2nd order theory.

16

Figure 2.2.2 – The single supported slab with in-plane and out-of-plane loads
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Figure 2.2.3 – The mx [kNm/m] moment with 1st and 2nd order analysis

Figure 2.2.4 – The my [kNm/m] moment with 1st and 2nd order analysis

Figure 2.2.5 – The mxy [kNm/m] moment with 1st and 2nd order analysis
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Figure 2.2.6 – The vertical translation [mm] with 1st and 2nd order analysis
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3. Stability analysis

3.1 Flexural buckling analysis of a beam modell with different boundary 
conditions

The cross section is a rectangular section see Fig. 3.1.1

The material C20/25 concrete

The elastic modulus E = 30000 GPa

The second moment of inertia about the weak axis I2 = 2.667ˑ10-4 m4

The length of the column L = 4 m

The boundary conditions see Fig. 3.1.1

The critical  load parameters  according to  the Euler's  theory are as  follows and next  to  the
analytical solution [1] the relevant results of the FEM-Design calculation can be seen. 

Pinned-pinned boundary condition:

F cr1=
π 2 E I 2

L2 =4934.8 kN F crFEM1=4910.9kN

Fixed-pinned boundary condition:

F cr2=
π 2 E I 2

(0.6992 L)2
=10094.1kN F crFEM2=9974.6kN

19

Figure 3.1.1 – The buckling problem with the different boundary conditions and the cross section
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Fixed-fixed boundary condition:

F cr3=
π 2 E I 2

(0.5 L)2
=19739.2kN F crFEM3=19318.7 kN

Fixed-free boundary condition:

F cr4=
π 2 E I 2

(2 L)2
=1233.7kN F crFEM4=1233.1kN

The difference between the two calculations are less than 3% but keep in mind that FEM-Design
considers the shear deformation therefore we can be sure that the Euler's results give higher
critical  values.  Fig.  3.1.2  shows  the  first  mode  shapes  of  the  problem  with  the  different
boundary conditions. 

20

Figure 3.1.2 – The buckling mode shapes for different boundary conditions
pinned-pinned; fixed-pinned; fixed-fixed; fixed-free
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3.2 Buckling analysis of a plate with shell modell

In this chapter we will analyze a rectangular plate with single supported four edges. The load is
a specific normal force at the shorter edge (see Fig. 3.2.1). The critical force parameters are the
questions due to this edge load, therefore it is a stability problem of a plate. 

In this case the material and the geometric properties are the following:

The thickness of the plate h = 0.05 m

The dimensions of the plate a = 8 m; b = 6 m

The elastic modulus E = 210 GPa 

Poisson's ratio ν = 0.3

The solutions of the differential equation of the plate buckling problem are as follows [6]:

N cr=(m b
a
+

n2 a
m b )

2 π
2( E h3

12(1−ν 2
))

b2 , m=1,2, 3 ... , n=1,2,3...

Figure 3.2.2 shows the problem in FEM-Design with the default mesh.

21

Figure 3.2.1 – The single supported edges and the specific normal force
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According to the analytical solution the first five critical load parameters are:

m=1 , n=1

N cr1=(1⋅6
8
+

128
1⋅6)

2 π
2(210000000⋅0.053

12(1−0.32
) )

62 =2860.36
kN
m

N crFEM1=2862.58
kN
m

m=2 , n=1

N cr2=(2⋅6
8
+

128
2⋅6)

2 π
2(210000000⋅0.053

12(1−0.32
) )

62 =3093.77
kN
m

N crFEM2=3109.96
kN
m

m=3 , n=1

N cr3=(3⋅6
8
+

12 8
3⋅6)

2 π
2(210000000⋅0.053

12(1−0.32
) )

62 =4784.56
kN
m

N crFEM3=4884.90
kN
m

m=4 , n=1

N cr4=(4⋅6
8
+

12 8
4⋅6)

2 π
2(210000000⋅0.053

12(1−0.32
) )

62 =7322.53
kN
m

N crFEM4=7655.58
kN
m

m=3 , n=2

N cr5=(3⋅6
8
+

228
3⋅6 )

2 π
2(210000000⋅0.053

12(1−0.32
) )

62 =10691.41
kN
m

N crFEM5=10804.62
kN
m

Next to these values we indicated the critical load parameters what were calculated with the
FEM-Design.

22

Figure 3.2.2 – The stability problem of a plate with single supported edges
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The difference between the calculations less than 5 %.

Figure 3.2.3 shows the first five stability mode shapes of rectangular single supported plate.

23

Figure 3.2.3 – The first five stability mode shape of the described problem
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3.3 Lateral torsional buckling of an I section with shell modell

The purpose of this example is calculate the lateral torsional critical moment of the following
simple supported beam (see Fig. 3.3.1).

The length of the beam is L = 10 m

The cross section see Fig. 3.3.2

The warping constant of the section Iw = 125841 cm6

The St. Venant torsional inertia It = 15.34 cm4

The minor axis second moment of area Iz = 602.7 cm4

The elastic modulus E = 210 GPa

The shear modulus G = 80.77 GPa

In this  case the critical  moment can be calculated with the following formula based on the
analytical solution [6]:

M cr=
π 2 E I z

L2 √ I w

I z

+
L2 G I t

π 2 E I z

M cr=
π 2
⋅21000⋅602.7

10002 √ 125841
602.7

+
10002

⋅8077⋅15.34

π 2
⋅21000⋅602.7

=4328kNcm

24

Figure 3.3.1 – The static frame of a simple supported beam loaded with bending moments of both ends 

M M

L=10 m

Figure 3.3.2 – The dimensions of the double symmetric cross section
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In FEM-Design a shell modell was built to analyze this problem. The bending moments in the
shell model were considered with line loads at the end of the flanges (see Fig. 3.3.3).

The supports provides the simple supported beam effects with a fork support for the shell model
(see Fig. 3.3.3).

From the FEM-Design stability calculation the critical moment value for this lateral torsional
buckling problem is:

M crFEM=4363kNcm

The critical  shape is  in Fig 3.3.4.  The finite  element  mesh size was provided based on the
automatic mesh generator of FEM-Design.

The difference between the two calculated critical moments is less than 1%.

25

Figure 3.3.3 – The FEM model with the supports and the loads (moments) at the ends

Figure 3.3.4 – The critical mode shape of the problem
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3.4 Lateral torsional buckling of a cantilever with elongated rectangle section

The purpose of this example is calculate the critical force at the end of a cantilever beam (see
Fig. 3.4.1). If the load is increasing the state of the cantilever will be unstable due to lateral
torsional buckling.

The input parameters:

The length of the beam is L = 10 m

The cross section t = 40 mm; h = 438 mm; see Fig. 3.4.1

The St. Venant torsional inertia It = 8806246 mm4

The minor axis second moment of area Iz = 2336000 mm4

The elastic modulus E = 210 GPa

The shear modulus G = 80.77 GPa

In this case (elongated rectangle cross section with cantilever boundary condition) the critical
concentrated force at the end can be calculated with the following formula based on analytical
solution:

P cr=
4.01 E I z

L2 √ G I t

E I z

P cr=
4.01⋅210000⋅2336000

100002 √ 80770⋅8806246
210000⋅2336000

=23687 N=23.69 kN

26

Figure 3.4.1 – The cantilever beam with concentrated load
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In FEM-Design a shell modell was built to analyze this problem. The concentrated load at the
end of the cantilever was considered at the top of the beam (see Fig. 3.4.2). 

With the FEM-Design stability calculation the critical concentrated force value for this lateral
torsional buckling problem is:

P crFEM=24.00kN

The critical  shape is  in Fig 3.4.3.  The finite  element  mesh size was provided based on the
automatic mesh generator of FEM-Design.

The difference between the two calculated critical load parameters is less than 2%.

27

Figure 3.4.2 – The FE model of the cantilever beam with the default mesh

Figure 3.4.3 – The critical mode shape of the problem
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4. Calculation of eigenfrequencies with linear dynamic theory

4.1 Continuous mass distribution on a cantilever column

Column height H = 4 m

The cross section square with 0.4 m edge

The second moment of inertia I = 0.002133 m4

The area of the cross section A = 0.16 m2

The shear correction factor ρ = 5/6 = 0.8333

The elastic modulus E = 30 GPa

The shear modulus G = 12.5 GPa

The specific self-weight of the column γ = 25 kN/m3

The mass of the column m = 1.631 t

Based on the analytical solution [4] the angular frequencies for this case is:

ω B=μ Bi√ EI
m H 3 ; μ B1=3.52;μ B2=22.03;μ B3=61.7

if only the bending deformations are considered. 

The angular frequencies are [4]:

28

Figure 4.1.1 – The cantilever with continuous mass distribution
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ω S=μ Si√ ρGA
m H

; μ S1=0.5π ;μ S2=1.5π ;μS3=2.5π

if only the shear deformations are considered. 

Based on these two equations (considering bending and shear deformation) using the Föppl
theorem the angular frequency for a continuous mass distribution column is:

1

ω n
2
=

1

ω B
2
+

1

ω S
2

Based on the given equations the first three angular frequencies separately for bending and shear
deformations are:

 

ω B1=3.52√ 30000000⋅0.002133
16⋅43 =87.16

1
s

ω B2=22.03√ 30000000⋅0.002133
1.631⋅43 =545.4

1
s

ω B3=61.7√ 30000000⋅0.002133
1.631⋅43 =1527.7

1
s

ω S1=0.5π √ 0.8333⋅12500000⋅0.16
1.631⋅4

=793.9
1
s

ω S2=1.5π √ 0.8333⋅12500000⋅0.16
1.631⋅4

=2381.8
1
s

ω S3=2.5π √ 0.8333⋅12500000⋅0.16
1.631⋅4

=3969.6
1
s

According to the Föppl theorem the resultant first three angular frequencies of the problem are:

ω n1=86.639
1
s

, ω n2=531.64
1
s

, ω n3=1425.8
1
s

And based on these results the first three eigenfrequencies are (f = ω/(2π)):

f n1=13.789
1
s

, f n2=84.613
1
s

, f n3=226.923
1
s
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In FEM-Design to consider the continuous mass distribution 200 beam elements were used for
the cantilever column. The first three planar mode shapes are as follows according to the FE
calculation:

f FEM1=13.780
1
s

, f FEM2=83.636
1
s

, f FEM3=223.326
1
s

The first three mode shapes can be seen in Fig. 4.1.2.

The differences between the analytical and FE solutions are less than 2 %.

30

Figure 4.1.2 – The first three mode shapes for the cantilever with continuous mass distribution
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4.2 Free vibration shapes of a clamped circular plate due to its self-weight

In the next example we will  analyze a circular clamped plate.  The eigenfrequencies are the
question due to the self-weight of the slab. 

In this case the material and the geometric properties are the following:

The thickness of the plate h = 0.05 m

The radius of the circular plate R = 5 m

The elastic modulus E = 210 GPa 

Poisson's ratio ν = 0.3

The density ρ = 7.85 t/m3

The solution of  the dynamic differential  equation for the first  two angular  frequencies  of a
clamped circular plate are [5]:

ω nm=
π 2

R2 β nm
2√(

E h3

12 (1−ν 2
))

ρ h
, β 10=1.015 , β 11=1.468

Figure 4.2.1 shows the problem in FEM-Design with the clamped edges and with the default
mesh.

According to the analytical solution the first two angular frequencies are:

31

Figure 4.2.1 – The clamped circular plate and the default finite element mesh
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 ω 10=
π 2

52 1.0152√(
210000000⋅0.053

12(1−0.32
) )

7.85⋅0.05
=31.83

1
s

, f 10=5.066
1
s

, f 10FEM=5.129
1
s

ω 11=
π 2

52 1.4682√(
210000000⋅0.053

12(1−0.32
) )

7.85⋅0.05
=66.58

1
s

, f 11=10.60
1
s

, f 11FEM=10.731
1
s

Based on the angular frequencies we can calculate the eigenfrequencies in a very easy way. Next
to these values we indicated the eigenfrequencies what were calculated with the FEM-Design.

The difference between the calculations less than 2 %.

Figure 4.2.2 shows the first two vibration mode shapes of the circular clamped plate.

32

Figure 4.2.2 – The first two vibration shape mode of a clamped circular plate
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5. Seismic calculation

5.1 Lateral force method with linear shape distribution on a cantilever

Inputs:

Column height H = 10 m

The cross section square with 0.4 m edge

The second moment of inertia I = 0.002133 m4

The elastic modulus E = 31 GPa

The concentrated mass points 10 pieces of 1.0 t (see Fig. 5.1.1)

The total mass m = 10.0 t

First of all based on a hand calculation we determine the first fundamental period:

The first fundamental period of a cantilever column (length H) with a concentrated mass at the
end (m mass) and EI bending stiffness [4]:

T i=
2π

√ 3 EI
mi H i

3

33

Figure 5.1.1 – The cantilever column with the concentrated mass points, the first vibration shape [T=0.765 s],
the equivalent forces [kN], the shear force diagram [kN] and the bending moment diagram [kNm] with FEM-

Design
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The fundamental period separately for the mass points from bottom to top:

T 1=
2π

√ 3⋅31000000⋅0.0021333
1⋅13

=0.01411s ; T 2=
2π

√ 3⋅31000000⋅0.0021333
1⋅23

=0.03990s ;

T 3=
2π

√ 3⋅31000000⋅0.0021333
1⋅33

=0.07330 s ; T 4=
2π

√ 3⋅31000000⋅0.0021333
1⋅43

=0.1129s ;

T 5=
2π

√ 3⋅31000000⋅0.0021333
1⋅53

=0.1577s ; T 6=
2π

√ 3⋅31000000⋅0.0021333
1⋅63

=0.2073s ;

T 7=
2π

√ 3⋅31000000⋅0.0021333
1⋅73

=0.2613s ; T 8=
2π

√ 3⋅31000000⋅0.0021333
1⋅83

=0.3192s ;

T 9=
2π

√ 3⋅31000000⋅0.0021333
1⋅93

=0.3809s ; T 10=
2π

√ 3⋅31000000⋅0.0021333
1⋅103

=0.4461s .

The approximated period based on these values according to the Dunkerley summary and the
result of FE calculation:

T HC=√∑
i=1

10

T i
2
=0.7758s T FEM=0.765s

The difference between the hand calculation and FEM-Design calculation is less than 2%, for
further information on the period calculation see Chapter 4.

The base shear force according to the fundamental period of vibration (see Fig. 5.1.1) and the
response spectrum (see Fig. 5.1.2):

F b=Sd (T 1)mλ=0.6588⋅10⋅1.0=6.588kN

We considered the response acceleration based on the period from FE calculation to get a more
comparable results at the end. Thus the equivalent forces on the different point masses are:

F i=F b

z i mi

∑ z j m j

=6.588
zi mi

1⋅1+2⋅1+3⋅1+4⋅1+5⋅1+6⋅1+7⋅1+8⋅1+9⋅1+10⋅1
=6.588

zi mi
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The equivalent forces from the bottom to the top on each point mass:

F1=0.120kN ; F 2=0.240 kN ; F 3=0.359kN ; F 4=0.479 kN ; F 5=0.599 kN ;

F6=0.719kN ; F7=0.838kN ; F 8=0.958 kN ; F 9=1.078kN ; F10=1.198kN

These forces are identical with the FEM-Design calculation and the shear force and bending
moment diagrams are also identical with the hand calculation.

35

Figure 5.1.2 – The response spectrum [T = 0.765 s; Sd = 0.6588 m/s2]
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5.2 Lateral force method with fundamental mode shape distribution on a 
cantilever

Inputs:

Column height H = 10 m

The cross section square with 0.4 m edge

The second moment of inertia I = 0.002133 m4

The elastic modulus E = 31 GPa

The concentrated mass points 10 pieces of 1.0 t (see Fig. 5.1.1)

The total mass m = 10.0 t

The base shear force according to the fundamental period of vibration (see Fig. 5.2.1) and the
response spectrum (see Fig. 5.2.2):

F b=Sd (T 1)mλ=0.6588⋅10⋅1.0=6.588kN

We considered the response acceleration based on the period from FE calculation to get a more
comparable results at the end. Thus the equivalent forces on the different point masses are:

36

Figure 5.2.1 – The cantilever column with the concentrated mass points, the first vibration shape with
the value of the eigenvector [T=0.765 s], the equivalent forces [kN], the shear force diagram [kN] and

the bending moment diagram [kNm] with FEM-Design
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F i=F b

si mi

∑ s j m j

=

=6.588
si mi

9.5⋅1+36.2⋅1+77.4⋅1+130.6⋅1+193.4⋅1+263.3⋅1+338.4⋅1+416.8⋅1+496.9⋅1+577.6⋅1
=6.588

si mi

2540.1

The equivalent forces from the bottom to the top on each point mass:

F1=0.0246kN ; F 2=0.0939 kN ; F 3=0.201kN ; F 4=0.339 kN ; F 5=0.502 kN ;

F6=0.683kN ; F7=0.878kN ; F 8=1.081kN ; F 9=1.289 kN ; F10=1.498kN

These forces are identical with the FEM-Design calculation and the shear force and bending
moment diagrams are also identical with the hand calculation.

37

Figure 5.2.2 – The response spectrum [T = 0.765 s; Sd = 0.6588 m/s2]
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5.3 Modal analysis of a concrete frame building

In this chapter we show a worked example for modal analysis on a concrete frame building
according to EN 1998-1:2008 with hand calculation and compare the results with FEM-Design.
This example is partly based on [4]. The geometry, the dimensions, the material and the bracing
system are in Fig. 5.3.1-3 and in the following table. 

Inputs:

Column height/Total height h = 3.2 m; H = 2·3.2=6.4 m

The cross sections Columns: 30/30 cm; Beams: 30/50 cm

The second moment of inertia Ic = 0.000675 m4; Ib = 0.003125 m4

The elastic modulus E = 28.80 GPa

The concentrated mass points 12 pieces of 13.358 t on 1st storey and
12 pieces  of  11.268 t  on  2nd storey  
(see Fig. 5.3.2)

The total mass 1st storey: m1 = 160.3 t
2nd storey: m2 = 135.2 t 
total mass: M = 295.5 t

Reduction factor for elastic modulus 
considering the cracking according to EN 1998-
1:2008

α = 0.5

Behaviour factors q = 1.5, qd = 1.5

Accidental torsional effect do not considered ξ = 0.05 (damping factor)

38

Figure 5.3.1 – The concrete frame building with the columns and beams
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The first exercise is the determination of the fundamental periods and mode shapes. There are
several hand calculation modes to get these values but in this chapter the details of the modal
analysis are important therefore we considered the first two fundamental periods based on FEM-
Design  calculation  (see  Fig.  5.3.5).  See  the  details  and  example  on  the  eigenfrequency
calculation in Chapter 4.

The dead loads and the live loads are considered in the mass points (see Fig. 5.3.2).

39

Figure 5.3.2 – The frame building with the masses and bracings

Figure 5.3.3 – The side view of the building
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According to the fundamental periods in Fig. 5.3.5 the response accelerations from Fig. 5.3.4
are: 

T 1=0.704 s S d1=1.115
m

s2
;

T 2=0.252s S d2=1.57
m

s2
.

The second step is to calculate the effective modal masses based on this formula:

mi
*=

(Φi
Tm ι )

2

Φi
T mΦ i

40

Figure 5.3.5 – The first two fundamental mode shapes [-], T1 = 0.704 s;  T2 = 0.252 s

Figure 5.3.4 – The considered design response specra according to EN 1998-1:2008
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During the hand calculation we assume that the structure is a two degrees of freedom system in
the x direction with the two storeys, because the first two modal shapes are in the same plane
see Fig. 5.3.5. Thus we only consider the seismic loads in one direction because in this way the
hand calculation is more comprehensible. 

m1
*
=
([40.9 73.6 ][160.3 0

0 135.2][11])
2

[40.9 73.6][160.3 0
0 135.2][40.9

73.6]
=272.3 t ;

m1
*

M
=

272.3
295.5

=92.1%

m2
*
=
([67.6 −44.5][160.3 0

0 135.2][11])
2

[67.6 −44.5][160.3 0
0 135.2][ 67.6

−44.5]
=23.23 t ;

m2
*

M
=

23.23
295.5

=7.9%

According to the assumption of a two degrees of freedom system the sum of the effective modal
masses is equal to the total mass: 

m1
*

M
+

m2
*

M
=

272.3
295.5

+
23.23
295.5

=100.0%

Calculation of the base shear forces:

F b1=S d1 m1
*
=1.115⋅272.3=303.6 kN ; F b2=S d2 m1

*
=1.570⋅23.23=36.5 kN

The equivalent forces come from this formula:

p i=mΦi

Φ i
T m ι

Φ i
T mΦ i

S di

The equivalent forces at the storeys respect to the mode shapes considering the mentioned two
degrees of freedom model:

p1=[160.3 0
0 135.2][40.9

73.6]
[40.9 73.6 ][160.3 0

0 135.2][11]
[40.9 73.6][160.3 0

0 135.2][40.9
73.6]

1.115=[120.6
183.0]kN
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p2=[160.3 0
0 135.2][ 67.6

−44.5]
[67.6 −44.5][160.3 0

0 135.2][11]
[67.6 −44.5][160.3 0

0 135.2][ 67.6
−44.5]

1.570=[ 81.98
−44.52]kN

The equivalent forces on one frame from the six (see Fig. 5.3.1):

pf1=[120.6 /6
183.0 /6]=[20.10

30.50]kN

pf2=[ 81.98/6
−44.52 /6]=[ 13.66

−7.420]kN

The shear forces between the storeys respect to the two different mode shapes:

V1=[20.1+30.5
30.5 ]=[50.6

30.5]kN V 2=[13.66−7.42
−7.42 ]=[ 6.24

−7.42]kN

The shear forces in the columns respect to the two different mode shapes:

V c1=[50.6 /2
30.5/2]=[25.30

15.25]kN V c2=[ 6.24 /2
−7.42 /2]=[ 3.13

−3.71]kN

The bending moments in the columns respect to the two different mode shapes from the relevant
shear forces (by the hand calculation we assumed zero bending moment points in the middle of
the columns):

Mc1=[25.30⋅3.2/2
15.25⋅3.2 /2]=[40.48

24.40]kNm Mc2=[ 3.13⋅3.2/2
−3.71⋅3.2/2]=[ 5.008

−5.936]kNm

The bending moments in the beams respect to the two different mode shapes:

Mb1=[40.48+24.40
24.40 ]=[64.88

24.40]kNm Mb2=[5.008−5.936
−5.936 ]=[−0.928

−5.936]kNm

The SRSS summation on the internal forces:
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V c=[ √25.302
+3.132

√15.252
+(−3.71)2]=[25.49

15.69]kN Mc=[√40.482
+5.0082

√24.402
+5.9362]=[40.79

25.11]kNm

Mb=[√64.882
+(−0.928)2

√24.402
+(−5.936)2]=[64.89

25.11]kNm

The CQC summation on the internal forces:

α 12=
T 2

T 1

=
0.252
0.704

=0.358

r 12=
8ξ 2

(1+α 12)α 12
3 /2

(1−α 12
2)

2
+4ξ 2α 12(1+α 12)

2
=

8⋅0.052
(1+0.358)0.3583/2

(1−0.3582)
2
+4⋅0.052

⋅0.358 (1+0.358)2
=0.007588

r=[ 1 0.007588
0.007588 1 ]

And based on these values the results of the CQC summation:

V c=[ √25.302
+3.132

+2⋅25.3⋅3.13⋅0.007588

√15.252
+(−3.71)2+2⋅15.25⋅(−3.71)⋅0.007588]=[25.52

15.67]kN

Mc=[√40.482+5.0082+2⋅40.48⋅5.008⋅0.007588

√24.402
+5.9362

+2⋅24.40⋅5.936⋅0.007588]=[40.83
25.16]kNm

Mb=[√64.882
+(−0.928)2+2⋅64.88⋅(−0.928)⋅0.007588

√24.402
+(−5.936)2+2⋅24.40⋅(−5.936⋅0.007588)]=[64.88

25.07]kNm

The following displacements come from the FEM-Design calculation on the complete frame
structure to ensure the comprehensible final results on the P-Δ effect.

The  displacements  at  the  storeys  respect  to  the  two different  mode  shapes  considering  the
displacement behaviour factor:

u1=qd[ 9.54
17.15]=1.5[ 9.54

17.15]=[14.31
25.73]mm u2=qd[ 0.818

−0.540]=1.5[ 0.818
−0.540]=[ 1.227

−0.810]mm

Based on these values the storey drifting respect to the two different mode shapes:

Δ1=[ 14.31
25.73−14.31]=[14.31

11.42]mm Δ2=[ 1.227
−0.810−1.227]=[ 1.227

−2.037]mm
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SRSS summation on the story drifting:

Δ=[ √14.312
+1.2272

√11.422
+(−2.027)2]=[14.36

11.60]mm

P-Δ effect checking on the total building:

P tot=[(m1+m2)g
m2 g ]=[(160.3+135.2)9.81

135.2⋅9.81 ]=[2899
1326]kN

V tot=[ 6⋅√50.62
+6.242

6⋅√30.52
+(−7.42)2]=[305.9

188.3]kN

θ 1=
P tot1Δ1

V tot1 h
=

2899⋅14.36
305.9⋅3200

=0.0425 θ 2=
P tot2Δ2

V tot2 h
=

1326⋅11.60
188.3⋅3200

=0.0255

After the hand calculation let's see the results from the FEM-Design calculation and compare
them to  each  other.  Fig.  5.3.6  shows  the  effective  modal  masses  from the  FE calculation.
Practically these values coincide with the hand calculation.

Fig. 5.3.7 and the following table shows the equivalent resultant shear forces and the base shear
forces respect to the first two mode shapes. The differences between the two calculations are
less than 2 %.

Storey 1 equivalent
resultant [kN]

Storey 2 equivalent
resultant [kN]

Base shear force
[kN]

Hand FEM Hand FEM Hand FEM

Mode shape 1 120.6 121.9 81.98 81.80 303.6 306.9

Mode shape 2 183.0 185.0 – 44.52 – 45.47 36.50 36.33

44

Figure 5.3.6 – The first two fundamental periods and the effective
modal masses from FEM-Design
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Fig. 5.3.8-9 and the following table shows the internal forces after the differenr summation
modes (SRSS and CQC). The differences between the two calculations are less than 2 %.

Column shear force
[kN]

Column bending moment
[kNm]

Beam bending moment
[kNm]

Storey 1 Storey 2 Storey 1 Storey 2 Storey 1 Storey 2

SRSS
Hand

25.49 15.69 40.79 25.11 64.89 25.11

SRSS
FEM

25.78 15.89
(37.18+45.32)/2=

41.25
27.51 59.33 27.51

CQC
Hand

25.50 15.67 40.83 25.16 64.88 25.07

CQC
FEM

25.80 15.86
(37.21+45.36)/2=

41.29
27.46 59.32 27.46

45

Figure 5.3.7 – The equivalent forces respect to the storeys and the base shear forces for the first two mode
shapes [kN]

Figure 5.3.8 – The shear force [kN] and bending moment diagram [kNm] after the SRSS summation rule
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Fig. 5.3.10 shows the Θ values from FEM-Design. The differences between the hand calculation
and FEM-Design are less than 3 %.

46

Figure 5.3.9 – The shear force [kN] and bending moment diagram [kNm] after the CQC summation rule

Figure 5.3.10 – The θ values at the different storeys from FEM-Design
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6. Calculation considering diaphragms

6.1. A simple calculation with diaphragms

If  we apply two diaphragms on the  two storeys  of  the building from Chapter  5.3 then  the
eigenfrequencies and the periods will be the same what we indicated in Chapter 5.3. 

6.2. The calculation of the shear center

In this example we show that how can we calculate the shear center of a storey based on the
FEM-Design  calculation.  We  analyzed  a  bottom  fixed  cantilever  structure  made  of  three
concrete  shear  walls  which  are  connected  to  each  other  at  the  edges  (see  Fig.  6.2.1).  The
diaphragm is applied at the top plane of the structure (see also Fig. 6.2.1 right side). If the height
of the structure is high enough then the shear center will be on the same geometry point where it
should be when we consider the complete cross section of the shear walls as a “thin-walled” “C”
cross section (see Fig. 6.2.1 left side). Therefore we calculate by hand the shear center of the
“C” profile assumed to be a thin-walled cross section then compare the solution what we can get
from FEM-Design calculation with diaphragms. 

Secondly we calculate the idealized bending stiffnesses in the principal rigidity directions by
hand and compare the results what we can calculate with FEM-Design results.

Inputs: 

Height of the walls H = 63 m

The thickness of the walls t = 20 cm

The width of wall number 1 and 3 w1 = w3 = 4.0 m

The width of wall number 2 w2 = 6.0 m

The applied Young's modulus of concrete E = 9.396 GPa

47

Figure 6.2.1 – The geometry of the bracing core and the height of the bottom fixed structure 
(the diaphragm is lying on the top plane, see the red line and hatch)
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First of all lets see Fig. 6.2.2. The applied cross section is a symmetric cross section. In the web
the shear stress distribution comes from the shear formula regarding bending (see Fig. 6.2.2).
Therefore it is a second order polynom. In the flanges the shear stress distribution is linear
according to the thin walled theory. With the resultant of these shear stress ditribution (see Fig.
6.2.2, V1, V2 and V3) the position of the shear center can be calculated based on the statical
(equilibrium) equations.

The shear stress values (see Fig. 6.2.2):

τ =
V S
I t

=
1⋅(0.2⋅4⋅3)

(0.2⋅63

12
+

4⋅6.23

12
−

4⋅5.83

12 )⋅0.2

=0.6665
kN
m2

τ max=
V S max

I t
=

1⋅(0.2⋅4⋅3+0.2⋅3⋅1.5)

(0.2⋅63

12
+

4⋅6.23

12
−

4⋅5.83

12 )⋅0.2

=0.9164
kN
m 2

Based on these stresses the resultant in the flanges and in the web:

V 1=V 3=
τ t w1

2
=

0.6665⋅0.2⋅4
2

=0.2667 kN

V 2=
2
3
(τ max−τ )w2t+τ w2 t=

2
3
(0.9164−0.6665)6⋅0.2+0.6665⋅6⋅0.2=0.9997kN

Respect to the equilibrium (sum of the forces):

V=1kN≈V 2=0.9997kN

48

Figure 6.2.2 – The shear stress distribution in a thin-walled cross section if the
shear force acting on the shear center
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And also respect to the equilibrium (if the external load is acting on the shear center, see Fig.
6.2.2) the sum of the moments:

V 1 w2=V 2 xS

xS=
V 1 w2

V 2

=
0.2667⋅6
0.9997

=1.601 m

Thus the shear center is lying on the symmetry axis and it is xS=1.601 m from the web (see Fig.
6.2.2). In FEM-Design the global coordinate system does not coincide with the symmetry axis
of the structure (see Fig. 6.2.1). Therefore we need no transform the results. 

Lets be a selected key node at the diaphragm in the global coordinate system (see Fig. 6.2.1):

xm=0m ; ym=0m

Based on the unit forces (1 kN) and moment (1 kNm) on the key node the displacements of the
key  node  are  as  follows  based  on  the  FEM-Design  calculation  (see  the  theory  manual
Calculation considering diaphragm chapter also):

According to unit force on key node in X direction:

uxx=1.5852mm u yx=0.72166 mm φ zx=0.29744⋅10−4 rad

According to unit force on key node in Y direction:

uxy=0.72166mm u yy=7.3314 mm φ zy=0.10328⋅10−2 rad

According to unit moment on key node around Z direction:

φ zz=0.16283⋅10−3 rad

Based on these finite element results the global coordinates of the shear center of the diaphragm
are:

xS= xm−
φ zy
φ zz

=0−
0.10328⋅10−2

0.16283⋅10−3 =−6.343m

yS= ym+
φ zx
φ zz

=0+
0.29744⋅10−4

0.16283⋅10−3 =+0.1827 m

In FEM-Design the coordinates of the middle point of the web are (see Fig. 6.2.1):

xmid=−4.919 m ; ymid=+0.894m
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With  the  distance  between  these  two  points  we  get  a  comparable  solution  with  the  hand
calculation.

xSFEM=√( xS−x mid )
2
+( yS− ymid )

2
=√(−6.343−(−4.919))

2
+(0.1827−0.894)

2
=1.592 m

The difference between FEM and hand calculation is less than 1%.

The gravity center  of  the  cross  section  (Fig.  6.2.2)  can  be  calculated  based on the  statical
moments. And of course the gravity center lying on the symmetry axis. The distance of the
gravity center from the web  is: 

x 'G=
S y '

A
=

2(0.2⋅4⋅2)
0.2(4+6+4)

=1.143m

With the input Young's modulus and with the second moments of inertia the idealized bending
stiffnesses in the principal directions can be calculated by hand.

E I 1=9396⋅103
⋅(0.2⋅63

12
+

4⋅6.23

12
−

4⋅5.83

12 )=1.692⋅108 kNm2

E I 2=9396⋅103
⋅(2

0.2⋅43

12
+2(0.2⋅4(2−1.143)2)+

6⋅0.23

12
+0.2⋅6(1.143)2)=4.585⋅107 kNm2

With the finite element results we can calculate the translations of the shear center according to
the unit forces and moment on the key node (see the former calculation method).

The distances between the shear center and the selected key node are: 

Δ x=x S− xm=−6.343−0=−6.343m=−6343mm

Δ y= yS− ym=+0.1827−0=+0.1827 m=182.7 mm

The translations of the shear center are as follows:

uSxx=u xx−φ zx Δ y=1.5852−0.29744⋅10−4
⋅182.7=1.5798mm

uSyx=u yx+φ zxΔ x=0.72166+0.29744⋅10−4
⋅(−6343)=0.5330 mm

uSxy=u xy−φ zy Δ y=0.72166−0.10328⋅10−2
⋅182.7=0.5330 mm

uSyy=u yy+φ zyΔ x=7.3314+0.10328⋅10−2
⋅(−6343)=0.7803mm

50



Verification Examples FEM-Design 16.0 

Based on these values the translations of the shear center in the principal directions:

u1=
uSxx+uSyy

2
+√(uSxx−uSyy

2 )
2

+uSxy
2
=

1.5798+0.7803
2

+√(1.5798−0.7803
2 )

2

+0.53302
=

=1.8463mm

u2=
uSxx+uSyy

2
−√(uSxx−uSyy

2 )
2

+uSxy
2
=

1.5798+0.7803
2

−√(1.5798−0.7803
2 )

2

+0.53302
=

=0.5138mm

According to these values the angles of the principal rigidity directions:

α 1FEM=arctan
u1−uSxx

uSxy

=arctan
1.8463−1.5798

0.533
=26.57o

α 2FEM=arctan
u2−uSxx

uSxy

=arctan
0.5138−1.5798

0.533
=−63.43o

The directions  coincide with the axes  of  symmetries  (see Fig.  6.2.1-2)  which is  one of the
principal rigidity direction in this case.

Then  with  FEM-Design  results  we  can  calculate  the  idealized  bending  stiffnesses  of  the
structure:

EI 1FEM=
H 3

3 u2

=
633

3⋅(0.5138/1000)
E I 1FEM=1.622⋅108 kNm2

EI 2FEM=
H 3

3u1

=
633

3⋅(1.8463/1000)
E I 2FEM=4.514⋅107 kNm2

The difference between FEM and hand calculation is less than 4%.
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7. Calculations considering nonlinear effects

7.1 Uplift calculation

7.1.1 A trusses with limited compression members

In this example a truss will be analyzed. First of all we calculate the normal forces in the truss
members  and the  maximum deflection  for  the  gived concentrated  loads.  After  this  step  we
calculate  the load multiplier  when the vertical  truss  members  reaches  its  limit  compression
bearing capacity what we set. See the inputs in the following table. After the hand calulation we
compare the results with the FEM-Design nonlinear calculation results.

Inputs:

Column height/Span H = 2.0 m; L = 8.0 m

The cross sections KKR 80x80x6

The area of the cross sections A = 1652 mm2

The elastic modulus E = 210 GPa, steel

The concentrated loads F = 40 kN

Limited compression of the vertical truss members Pcr = 700 kN
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Figure 7.1.1.1 – The truss with the concentrated loads and with the
virtual loads for the translation claculation
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The normal forces in the truss members based on the hand calculation (without further details)
are:

N 1=N 17=−100kN ; N 2=N 14=0 kN ; N 3=N15=+84.85 kN ;

N 4=N 5=N 13=N 16=−60.00 kN ; N 6=N 10=+60.00 kN ;

N 7=N 11=+28.28kN ; N 8=N 12=−80.00 kN ; N 9=−40.00 kN .

The normal forces  in the truss members according to the vertical virtual force (see Fig. 7.1.1.1):

N 1,1=N 1,17=−0.5kN ; N 1,2=N 1,14=N1,9=0 kN ;

N 1,3=N 1,15=N 1,7=N 1,11=+0.7071 kN ;

N 1,4=N 1,5=N 1,13=N 1,16=−0.5kN ; N 1,6=N 1,10=+0.5kN ;

N 1,8=N 1,12=−1.0kN .

The normal forces  in the truss members according to the horizontal  virtual force (see Fig.
7.1.1.1):

N 2,2=N 2,6=N 2,10=N 2,14=+1.0kN ;

N 2,1=N 2,3=N 2,4=N 2,5=N 2,7=N 2,8=N 2,9=N 2,11=N 2,12=N 2,13=N 2,15=N 2,16=N 2,17=0 kN .

The hand calculation of the vertical translation at the mid-span with the virtual force method:

e z=
1

EA
∑
i=1

17

N iδ N 1,i li=0.003841m=3.841mm

The hand calculation of the horizontal translation at right roller with the virtual force method:

e x=
1

EA
∑
i=1

17

N iδ N 2,i li=0.0006918m=0.6918mm
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Figure 7.1.1.2 – The truss with the concentrated loads in FEM-Design
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Figure 7.1.1.3 – The reaction forces

Figure 7.1.1.4 – The normal forces in the truss members

Figure 7.1.1.5 – The vertical translation at the mid-span and the horizontal translation at the right roller [mm]
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The translations and the normal forces in the truss members based on the hand calculation are
identical with the FEM-Design calculation, see Fig. 7.1.1.2-5. 

After this step we would like to know the maximum load multiplier when the vertical truss
members  reaches  its  limit  compression  bearing  capacity  what  we  set,  Pcr  =  700  kN.  The
maximum compression force arises in the side columns, see the hand calculation, N1  = (–)100
kN. Therefore the load multiplier based on the hand calcualtion is λ = 7.0.

Let's see the FEM-Design uplift calculation considering the limit compression in the vertical
members. 

With  λFEM = 7.00 multiplier the FEM-Design analysis gives the accurate result but with  λFEM =
7.01  (see  Fig.  7.1.1.7)  large  nodal  displacements  occurred,  see  Fig.  7.1.1.6.  Thus  by  this
structure if we neglect the effect of the side members the complete truss became a statically
over-determinated structure. FEM-Design solve this problem with iterative solver due to the fact
that these kind of problems are nonlinear.
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Figure 7.1.1.6 – Large nodal displacements when the side truss
members reached the limit compression value [mm]

Figure 7.1.1.7 – The two different analyzed load multiplier in FEM-Design 
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7.1.2 A continuous beam with three supports 

In this example we analyse non-linear supports of a beam. Let's consider a continuous beam
with three supports with the following parameters:

Inputs:

Span length L = 2 m, total length = 2x2 = 4 m 

The cross sections Rectangle: 120x150 mm

The elastic modulus E = 30 GPa, concrete C20/25

Intensity of distributed load (total, partial) p = 10 kN/m

In Case I. the distribution of the external load and the nonlinearity of the supports differ from
Case II. See the further details below (Fig. 7.1.2.1 and Fig. 7.1.2.8).

a) Case I.

In this case the distributed load is a total load (Fig. 7.1.2.1). In the first part all of the three
supports behave the same way for compression and tension. In the second part of this case the
middle support only bears tension. We calculate in both cases the deflections, shear forces and
bending  moments  by  hand  and  compared  the  results  with  FEM-Design  uplift  (nonlinear)
calculations.

In first part of this case the maximum deflection comes from the following formula considering
only the bending deformations in the beam:

emax=
2.1
384

p L4

EI
=

2.1
384

10⋅24

30000000⋅0.12⋅0.153
/12

=0.0008642m=0.8642mm

The relevant results with FEM-Design:
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Figure 7.1.2.1 – The beam with three supports and uniform distributed load

Figure 7.1.2.2 – The deflection of the beam with three supports (total load)
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The extremums of the shear force without signs:

V 1=
3
8

p L=
3
8

10⋅2=7.5kN ; V 2=
5
8

p L=
5
8

10⋅2=12.5kN

The relevant results with FEM-Design:

The extremums of the bending moment without signs:

M midspan=
9

128
p L2

=
9

128
10⋅22

=2.812kNm ; M middle=
1
8

p L2
=

1
8

10⋅22
=5.0kNm

The relevant results with FEM-Design:

When the middle support only bear tension (second part of this case) basically under the total
vertical load (Fig. 7.1.2.1)  the middle support is not active (support nonlinearity). Therefore it
works as a simply supported beam with two supports. The deflection, the shear forces and the
bending moments are the following:

The  maximum deflection  comes  from the  following  formula  considering  only  the  bending
deformations in the beam:

emax=
5

384
p (L+L)4

EI
=

5
384

10⋅(2+2)4

30000000⋅0.12⋅0.153
/12

=0.03292m=32.92 mm
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Figure 7.1.2.3 – The shear diagram of the beam with three supports (total load)

Figure 7.1.2.4 – The bending moment diagram of the beam with three supports (total load)
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The relevant results with FEM-Design:

The maximum of the shear force without sign:

V=
1
2

p (L+L)=
1
2

10(2+2)=20kN

The relevant results with FEM-Design:

The extremum of the bending moment without sign:

M max=
1
8

p (L+L)2=
1
8

10⋅(2+2)2=20kNm

The relevant results with FEM-Design:

The differences between the calculated results by hand and by FEM-Design are less than 2%.
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Figure 7.1.2.5 – The deflection of the beam when the middle support only bear tension (total load)

Figure 7.1.2.6 – The shear diagram of the beam when the middle support only bear tension (total load)

Figure 7.1.2.7 – The bending moment diagram of the beam when the middle support only bear tension (total load)
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b) Case II.

In this case the distributed load is a partial load (Fig. 7.1.2.8). In the first part all of the three
supports behave the same way for compression and tension. In the second part of this case the
right side support only bears compression.  We calculate in both cases the deflections,  shear
forces and bending moments by hand and compared the results with FEM-Design calculations.

The  extremums  of  the  deflection  come  from  the  following  formulas  considering  only  the
bending deformations in the beam (without signs):

emax≈
2.1
384

( p /2)L4

EI
+

5
384

( p/ 2)L4

EI
=

2.1
384

10/2⋅24

EI
+

5
384

10/ 2⋅24

EI
=0.001461 m=1.461mm

emin≈
5

384
( p /2)L4

EI
−

2
384

( p /2)L4

EI
=

5
384

10/2⋅24

EI
−

2
384

10 /2⋅24

EI
=0.0006173m=0.6173mm

The relevant results with FEM-Design:

The extremums of the shear force without signs:

V 1=
7

16
p L=

7
16

10⋅2=8.75 kN ; V 2=
9

16
p L=

9
16

10⋅2=11.25 kN ;

V 3=
1
16

p L=
1

16
10⋅2=1.25kN

The relevant results with FEM-Design:
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Figure 7.1.2.8 – The beam with three supports and uniform partial load

Figure 7.1.2.9 – The deflection of the beam with three supports (partial load)
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The extremums of the bending moment without signs:

M midspan=
( 7

16
p L)

2

2 p
=
( 7

16
10⋅2)

2

2⋅10
=3.828kNm ; M middle=

1
16

p L2
=

1
16

10⋅22
=2.5 kNm

The relevant results with FEM-Design:

When the right side support only bear compression (second part of this case) basically under the
partial  vertical  load (Fig.  7.1.2.8) the right  side support is  not  active (support nonlinearity).
Therefore it works as a simply supported beam with two supports. The deflection, the shear
forces and the bending moments are the following:

The  maximum deflection  comes  from the  following  formula  considering  only  the  bending
deformations in the beam:

emidspan=
5

384
p L4

EI
=

5
384

10⋅24

EI
=0.002058m=2.058 mm

eright=
1

24
p L4

EI
=

1
24

10⋅24

EI
=0.006584 m=6.584 mm
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Figure 7.1.2.10 – The shear diagram of the beam with three supports (partial load)

Figure 7.1.2.11 – The bending moment diagram of the beam with three supports (partial load)
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The relevant results with FEM-Design:

The extremum of the shear force without sign:

V=
1
2

p (L)=
1
2

10⋅2=10 kN

The relevant results with FEM-Design:

The extremum of the bending moment without sign:

M max=
1
8

p L2
=

1
8

10⋅22
=5.0 kNm

The relevant results with FEM-Design:

The differences between the calculated results by hand and by FEM-Design are less than 2%.
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Figure 7.1.2.12 – The deflection of the beam when the right support only bear compression (partial load)

Figure 7.1.2.13 – The shear diagram of the beam when the right support only bear compression (partial load)

Figure 7.1.2.14 – The bending moment diagram of the beam when the right support only bear compression
(partial load)
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7.2 Cracked section analysis by reinforced concrete elements

7.2.1 Cracked deflection of a simply supported beam

Inputs:

Span length Leff = 7.2 m

The cross section Rectangle: b = 300 mm; h = 450 mm

The elastic modulus of concrete Ecm = 31.476 GPa, C25/30

The creep factor φ28 = 2.35

Effective elastic modulus of concrete Eceff = Ecm/(1+φ28) = 9.396 GPa

Mean tensile strength fctm = 2.565 MPa

Elastic modulus of steel bars Es = 200 GPa

Characteristic value of dead load gk = 8.5 kN/m

Characteristic value of live load qk = 12.0 kN/m

Live load combination factor ψ2 = 0.6

Diameter of the longitudinal reinforcement ϕl = 18 mm

Diameter of the stirrup reinforcement ϕs = 8 mm

Area of longitudinal reinforcement Al = 5x182π/4 = 1272.3 m2

Nominal concrete cover cnom = 20 mm

The cross sectional properties without calculation details:

I. stress stadium second moment of inertia II = 3.075x109 mm4 

II. stress stadium second moment of inertia III = 2.028x109 mm4 

I. stress stadium position of neutral axis xI = 256.4 mm

II. stress stadium position of neutral axis xII = 197.3 mm
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Figure 7.2.1.1 – The simply supported RC beam
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The calculation of deflection according to EN 1992-1-1:

The load value for the quasi-permanent load combination:

pqp=g k+ψ 2 qk=8.5+0.6⋅12=15.7
kN
m

The maximum deflection with cross sectional properties in Stadium I. (uncracked):

w k.I=
5

384
pqp Leff

4

Eceff I I

=
5

384
15.7⋅7.24

9396000⋅0.003075
=0.01901m=19.01mm

The maximum deflection with cross sectional properties in Stadium II. (cracked):

w k.II=
5

384
pqp Leff

4

E ceff I II

=
5

384
15.7⋅7.24

9396000⋅0.002028
=0.02883 m=28.83 mm

The maximum bending moment under the  quasi-permanent load:

M max=
1
8

pqp Leff
2
=

1
8

15.7⋅7.22
=101.74 kNm

The cracking moment with the mean tensile strength:

M cr= f ctm

I I

h− xI

=2565
0.003075

0.45−0.2564
=40.74kNm

The interpolation factor considering the mixture of cracked and uncracked behaviour:

ζ=max[1−0.5( M cr

M max)
2

, 0]=max[1−0.5( 40.74
101.74)

2

, 0]=0.9198

This value is almost 1.0, it means that the final deflection will be closer to the cracked deflection
than to the uncracked one.

The final deflection with the aim of interpolation factor:

w k=(1−ζ )w k.I+ζ w k.II=(1−0.9198)19.01+0.9198⋅28.83=28.04mm
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First we modelled the beam with beam elements. In FEM-Design we increased the division 
number of the beam finite elements to five to get the more accurate results.

Fig.  7.2.1.2  shows  the  applied  cross  section  and  reinforcement  with  the  defined  input
parameters.

Fig. 7.2.1.3 shows the deflection after the cracked section analysis. The deflection of the beam
model in FEM-Design: 

w kFEM=30.59 mm

The difference is less than 9 %.
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Figure 7.2.1.2 – The cross section of the RC beam in FEM-Design

Figure 7.2.1.3 – The deflection of the RC beam in FEM-Design with cracked section analysis
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Secondly we modelled  the  beam with  shell  finite  elements.  Fig.  7.2.1.4  shows the  applied
specific reinforcement with the defined input parameters with slab.

Fig. 7.2.1.5 shows the deflection and the finite element mesh after the cracked section analysis.
The deflection of the shell model in FEM-Design: 

w kFEM=27.0mm

The difference is less than 4 %.
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Figure 7.2.1.4 – The specific reinforcement with the shell model in FEM-Design

Figure 7.2.1.5 – The deflection of the RC shell model in FEM-Design with cracked section analysis
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7.2.2 Cracked deflection of a cantilever beam

Inputs:

Span length Leff = 4 m

The cross section Rectangle: b = 300 mm; h = 450 mm

The elastic modulus of concrete Ecm = 31.476 GPa, C25/30

The creep factor φ28 = 2.35

Effective elastic modulus of concrete Eceff = Ecm/(1+φ28) = 9.396 GPa

Mean tensile strength fctm = 2.565 MPa

Elastic modulus of steel bars Es = 200 GPa

Characteristic value of dead load gk = 8.5 kN/m

Characteristic value of live load qk = 12.0 kN/m

Live load combination factor ψ2 = 0.6

Diameter of the longitudinal reinforcement ϕl = 18 mm

Diameter of the stirrup reinforcement ϕs = 8 mm

Area of longitudinal reinforcement Al = 5x182π/4 = 1272.3 m2

Nominal concrete cover cnom = 20 mm

The cross sectional properties without calculation details:

I. stress stadium second moment of inertia II = 3.075x109 mm4 

II. stress stadium second moment of inertia III = 2.028x109 mm4 

I. stress stadium position of neutral axis xI = 256.4 mm

II. stress stadium position of neutral axis xII = 197.3 mm
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Figure 7.2.2.1 – The cantilever RC beam
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The calculation of deflection according to EN 1992-1-1:

The load value for the quasi-permanent load combination:

pqp=g k+ψ 2 qk=8.5+0.6⋅12=15.7
kN
m

The maximum deflection with cross sectional properties in Stadium I. (uncracked):

w k.I=
1
8

pqp Leff
4

E ceff I I

=
1
8

15.7⋅44

9396000⋅0.003075
=0.01739 m=17.39 mm

The maximum deflection with cross sectional properties in Stadium II. (cracked):

w k.II=
1
8

pqp Leff
4

E ceff I II

=
1
8

15.7⋅44

9396000⋅0.002028
=0.02637m=26.37mm

The maximum bending moment under the  quasi-permanent load:

M max=
1
2

pqp Leff
2
=

1
2

15.7⋅42
=125.6 kNm

The cracking moment with the mean tensile strength:

M cr= f ctm

I I

h− xI

=2565
0.003075

0.45−0.2564
=40.74kNm

The interpolation factor considering the mixture of cracked and uncracked behaviour:

ζ=max[1−0.5( M cr

M max)
2

, 0]=max[1−0.5(40.74
125.6)

2

, 0]=0.9474

This value is almost 1.0, it means that the final deflection will be closer to the cracked deflection
than to the uncracked one.

The final deflection with the aim of interpolation factor:

w k=(1−ζ )w k.I+ζ w k.II=(1−0.9474)17.39+0.9474⋅26.37=25.90 mm
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We modelled the beam with beam finite elements. In FEM-Design we increased the division
number of the beam finite elements to five to get the more accurate results.

Fig.  7.2.2.2  shows  the  applied  cross  section  and  reinforcement  with  the  defined  input
parameters.

Fig. 7.2.2.3 shows the deflection after the cracked section analysis. The deflection of the beam
model in FEM-Design: 

w kFEM=27.54mm

The difference is less than 7 %.
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Figure 7.2.2.2 – The cross section of the RC cantilever in FEM-Design

Figure 7.2.2.3 – The deflection of the RC cantilever in FEM-Design with cracked section analysis
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7.3 Nonlinear soil calculation

This  chapter  goes  beyond the scope of  this  document,  therefore additional  informations are
located in:

FEM-Design – Geotechnical modul in 3D, Theoretical background and verification and
validation handbook

http://download.strusoft.com/FEM-Design/inst150x/documents//3dsoilmanual.pdf 
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8. Cross section editor

8.1 Calculation of a compound cross section

An example for compound cross section is taken from [7] where the authors calculated the cross
sectional properties with the assumption of thin-walled simplifications. The welded cross section
is consisting of U300 and L160x80x12 (DIN) profiles. In the  Section Editor  the  exact cold
rolled geometry was analyzed as it is seen in Figure 8.1.1.

The following table contains the results of the two independent calculations with several cross
sectional properties.

Notation Ref. [1] Section Editor

A [cm2] 86.76 86.30

yG [cm] 1.210 1.442

zG [cm] 19.20 19.22

y'S [cm] 1.39 0.7230

z'S [cm] 10.06 10.36

Iy [cm4] 11379.9 11431.2

Iz [cm4] 4513.3 4372.9

Iyz [cm4] 3013.2 3053.5

It [cm4] 48.83 52.11

Iw [cm6] - 203082.0

Table 8.1.1 – The results of the example
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Figure 8.1.1 – The analyzed cross section
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9. Design calculations

9.1 Required reinforcement calculation for a slab

In this example we calculate the required reinforcements of a slab due to elliptic and hyperbolic
bending conditions. First of all the applied reinforcement is  orthogonal and then the applied
reinforcement is non-orthogonal. We calculate the required reinforcement with hand calculation
and then compare the results with FEM-Design values.

Inputs:

The thickness h = 200 mm

The elastic modulus of concrete Ecm = 33 GPa, C30/37

The Poisson's ratio of concrete ν = 0.2 

The design value of compressive strength fcd = 20 MPa

Elastic modulus of steel bars Es = 200 GPa

The design value of yield stress of steel bars fyd = 434.8 MPa

Diameter of the longitudinal reinforcement ϕl = 10 mm

Nominal concrete cover cx = 20 mm; cy = 30 mm

Effective heights dx = 175 mm; dy = 165 mm

I.) Elliptic bending

In the first case the bending condition is an elliptic bending. In FEM-Design the model is a slab
with statically determinant support system and specific moment loads at its edges for the pure
internal force state (see Fig. 9.2.2.1).  
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Figure 9.2.2.1 – The slab with the edge loads for pure stress state
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Fig. 9.2.2.2 shows the constant internal forces in the slab due to the loads. Fig. 9.2.2.3 shows the
principal moments and their directions based on the FEM-Design calculation. According to the
pure stress state the principal moments and the directions are the same in each elements. 

First of all the reinforcement is orthogonal and the hand calculation and the comparison are the 
following:

1. Orthogonal reinforcement (  φ  =90  o  )

The  reinforcement  is  orthogonal  and  their  directions  concide  with  the  local  system  (x=ξ,
y=ϑ=η).

The moments in the slab (tensor of the applied moments):

m x=mξ=+16 kNm /m

m y=mϑ=mη=+8kNm /m

m xy=mξ ϑ=mξη=+6 kNm /m
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Figure 9.2.2.2 – The mx, my, and mxy internal forces in the slab [kNm]

Figure 9.2.2.3 – The m1 and m2 principal moments and their directions in the slab [kNm]
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The first invariant of the tensor: m x+m y=+24 kNm /m

The calculation of the principal moments and their directions:

m1=
m x+m y

2
+√(mx−m y

2 )
2

+mxy
2
=

16+8
2

+√( 16−8
2 )

2

+62
=19.21 kNm /m

m2=
mx+m y

2
−√(m x−m y

2 )
2

+m xy
2
=

16+8
2

−√(16−8
2 )

2

+62
=4.79 kNm /m

α 0=arctan
m1−mx

m xy

=arctan
19.21−16

6
=28.15o

Compare these results with Fig. 9.2.2.3. The difference is 0 %.

The design moments (according to [9][10]) if the reinforcement (ξ,η) is orthogonal and their
directions concide with the local co-ordinate system (x,y):

Case a)

mud ξ=mξ−mϑ

cosφ
1+cosφ

+mξ ϑ

1−2cosφ
sinφ

=16−8
cos 90o

1+cos90o+6
1−2cos90o

sin 90o =+22kNm /m

mudη=mϑ

1
1+cosφ

+mξ ϑ

1
sinφ

=8
1

1+cos90o
+6

1

sin 90o
=+14 kNm /m

This is a valid solution! Because mud ξ+mudη=+36kNm /m>m x+m y=+24 kNm /m

mud ξ=+22kNm /m mudη=+14kNm /m

Case b)

mud ξ=mξ+mϑ

cosφ
1−cosφ

−mξ ϑ

1+2cosφ
sinφ

=16+8
cos 90o

1−cos90o−6
1+2cos90o

sin 90o =+10 kNm /m

mudη=mϑ

1
1−cosφ

−mξ ϑ

1
sinφ

=8
1

1−cos90o
−6

1

sin 90o
=+2 kNm /m

Invalid solution! Because mud ξ+mudη=+12 kNm /m<m x+m y=+24 kNm /m

Case ξ)

mud ξ=mξ−
mξ ϑ

2

mϑ

=16−
62

8
=+11.5 kNm/m

mudη=0

Invalid solution! Because mud ξ+mudη=+11.5 kNm /m<mx+m y=+24 kNm /m
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Case η)

mud ξ=0

mudη=
mξ mϑ−mξ ϑ

2

mξ sin2φ+mϑ cos2φ−mξ ϑ sin 2φ
=

16⋅8−62

16⋅sin2 90o
+8⋅cos290o

−6⋅sin (2⋅90o
)
=+5.75

kNm
m

Invalid solution! Because mud ξ+mudη=+5.75 kNm /m<m x+m y=+24 kNm /m

The results of the design moments based on FEM-Design are in Fig. 9.2.2.4 and 9.2.2.5. The
difference between the hand and FE calculation is 0%.
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Figure 9.2.2.4 – The mud ξ design moment for elliptic bending with orthogonal reinforcement [kNm]

Figure 9.2.2.5 – The mud η design moment for elliptic bending with orthogonal reinforcement [kNm]
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Calculation of the required reinforcement based on the valid design moments:

In x (  ξ  ) direction:

Sum of the moments:

mud ξ= f cd xc(d x−
xc

2 ) ; 22000=20 xc(175−
xc

2 ) ; xc=6.403 mm

Sum of the forces:

xc f cd=a sξ f yd ; 6.403⋅20=asξ 434.8 ; asξ=0.2945 mm2
/mm=294.5mm2

/m

Fig. 9.2.2.6 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%. 

In y (  η  ) direction:

Sum of the moments:

mudη= f cd xc(d y−
xc

2 ) ; 14000=20 xc(165−
xc

2 ) ; xc=4.298 mm

Sum of the forces:

xc f cd=a sη f yd ; 4.298⋅20=asη 434.8 ; asη=0.1977mm2
/mm=197.7 mm2

/m

Fig. 9.2.2.7 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%. 
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Figure 9.2.2.6 – The asξ required reinforcement at the bottom for elliptic bending with orthogonal
reinforcement [mm2/m]
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Secondly the reinforcement is non-orthogonal and the hand calculation and the comparison are 
the following:

2. Non-orthogonal reinforcement (  φ  =75  o   between   ξ and η  )

The reinforcement is non-orthogonal and the  ξ direction concides with the local x direction.
Thus y=ϑ. The angle between the ξ directional reinforcement and  η directional reinforcement is
φ=75o.

The moments in the slab (tensor of the applied moments):

m x=mξ=+16 kNm /m

m y=mϑ=mη=+8kNm /m

m xy=mξ ϑ=+6kNm /m

The first invariant of the tensor: m x+m y=+24 kNm /m

The design moments (according to [9][10]) if the reinforcement (ξ,η) is non-orthogonal:

Case a)

mud ξ=mξ−mϑ

cosφ
1+cosφ

+mξ ϑ

1−2cosφ
sinφ

=16−8
cos 75o

1+cos 75o+6
1−2cos75o

sin 75o =+17.35kNm /m

mudη=mϑ

1
1+cosφ

+mξ ϑ

1
sinφ

=8
1

1+cos75o
+6

1

sin 75o
=+12.57 kNm /m

This is a valid solution! Because mud ξ+mudη=+29.92kNm /m>mx+m y=+24kNm /m

mud ξ=+17.35 kNm /m mudη=+12.57kNm /m
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Figure 9.2.2.7 – The asη required reinforcement at the bottom for elliptic bending with orthogonal
reinforcement [mm2/m]
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Case b)

mud ξ=mξ+mϑ

cosφ
1−cosφ

−mξ ϑ

1+2cosφ
sinφ

=16+8
cos 75o

1−cos 75o−6
1+2cos75o

sin 75o =+9.37kNm /m

mudη=mϑ

1
1−cosφ

−mξ ϑ

1
sinφ

=8
1

1−cos75o
−6

1

sin 75o
=+4.58kNm /m

Invalid solution! Because mud ξ+mudη=+13.95 kNm /m<mx+m y=+24 kNm /m

Case ξ)

mud ξ=mξ−
mξ ϑ

2

mϑ

=16−
62

8
=+11.5 kNm/m

mudη=0

Invalid solution! Because mud ξ+mudη=+11.5 kNm /m<mx+m y=+24 kNm /m

Case η)

mud ξ=0

mudη=
mξ mϑ−mξ ϑ

2

mξ sin2φ+mϑ cos2φ−mξ ϑ sin 2φ
=

16⋅8−62

16⋅sin2 75o
+8⋅cos2 75o

−6⋅sin(2⋅75o
)
=+7.38

kNm
m

Invalid solution! Because mud ξ+mudη=+7.38kNm /m<m x+m y=+24 kNm /m

The results of the design moments based on FEM-Design are in Fig. 9.2.2.8 and 9.2.2.9. The
difference between the hand and FE calculation is 0%.
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Figure 9.2.2.8 – The mud ξ design moment for elliptic bending with non-orthogonal reinforcement [kNm]
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Calculation of the required reinforcement based on the valid design moments:

In x (  ξ  ) direction:

Sum of the moments:

mud ξ= f cd xc(d x−
xc

2 ) ; 17350=20 xc(175−
xc

2 ) ; xc=5.029mm

Sum of the forces:

xc f cd=a sξ f yd ; 5.029⋅20=asξ 434.8 ; asξ=0.2313 mm2
/mm=231.3 mm2

/m

Fig. 9.2.2.10 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%. 
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Figure 9.2.2.10 – The asξ required reinforcement at the bottom for elliptic bending with non-orthogonal
reinforcement [mm2/m]

Figure 9.2.2.9 – The mud η design moment for elliptic bending with non-orthogonal reinforcement [kNm]
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In   η   direction:

Sum of the moments:

mudη= f cd xc(d y−
xc

2 ) ; 12570=20 xc(165−
xc

2 ) ; xc=3.854 mm

Sum of the forces:

xc f cd=a sη f yd ; 3.854⋅20=asη 434.8 ; asη=0.1773mm2
/mm=177.3mm2

/m

Fig. 9.2.2.11 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%. 
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Figure 9.2.2.11 – The asη required reinforcement at the bottom for elliptic bending with non-orthogonal
reinforcement [mm2/m]
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II.) Hyperbolic bending

In the second case the bending condition is a hyperbolic bending. In FEM-Design the model is a
slab with statically determinant support system and specific moment loads at its edges for the
pure internal force state (see Fig. 9.2.2.12).  

Fig. 9.2.2.13 shows the constant internal forces in the slab due to the loads. Fig. 9.2.2.14 shows
the principal moments and their directions based on the FEM-Design calculation. According to
the pure stress state the principal moments and the directions are the same in each elements. 
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Figure 9.2.2.12 – The slab with the edge loads for pure stress state

Figure 9.2.2.13 – The mx, my, and mxy internal forces in the slab [kNm]
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Firstly the reinforcement is orthogonal and the hand calculation and the comparison are the 
following:

1. Orthogonal reinforcement

The  reinforcement  is  orthogonal  and  their  directions  concide  with  the  local  system  (x=ξ,
y=ϑ=η).

The moments in the slab (tensor of the applied moments):

m x=mξ=+16 kNm /m

m y=mϑ=mη=−8kNm /m

m xy=mξ ϑ=mξη=+6 kNm /m

The first invariant of the tensor: m x+m y=+8kNm /m

The calculation of the principal moments and their directions:

m1=
m x+m y

2
+√(mx−m y

2 )
2

+mxy
2
=

16+(−8)
2

+√(16−(−8)
2 )

2

+62
=17.42 kNm /m

m2=
mx+m y

2
−√(m x−m y

2 )
2

+m xy
2
=

16+(−8)
2

−√(16−(−8)
2 )

2

+62
=−9.42 kNm /m

α 0=arctan
17.42−16

6
=arctan

19.21−16
6

=13.32o

Compare these results with Fig. 9.2.2.14. The difference is 0 %.

The design moments (according to [9][10]) if the reinforcement (ξ,η) is non-orthogonal:
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Figure 9.2.2.14 – The m1  and m2 principal moments and their directions in the slab [kNm]
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Case a)

mud ξ=mξ−mϑ

cosφ
1+cosφ

+mξ ϑ

1−2cosφ
sinφ

=16+8
cos 90o

1+cos90o+6
1−2cos90o

sin 90o =+22kNm /m

mudη=mϑ

1
1+cosφ

+mξ ϑ

1
sinφ

=−8
1

1+cos 90o
+6

1

sin 90o
=−2 kNm /m

Invalid solution! Because their have different signs.

Case b)

mud ξ=mξ+mϑ

cosφ
1−cosφ

−mξ ϑ

1+2cosφ
sinφ

=16−8
cos 90o

1−cos90o−6
1+2cos90o

sin 90o =+10 kNm /m

mudη=mϑ

1
1−cosφ

−mξ ϑ

1
sinφ

=−8
1

1−cos 90o
−6

1

sin 90o
=−14 kNm /m

Invalid solution! Because their have different signs.

Case ξ)

mud ξ=mξ−
mξ ϑ

2

mϑ

=16−
62

−8
=+20.5kNm /m

mudη=0

This is a valid solution at the bottom!

mud ξ=+20.5 kNm /m mudη=0 kNm /m

Case η)

mud ξ=0

mudη=
mξ mϑ−mξ ϑ

2

mξ sin2φ+mϑ cos2φ−mξ ϑ sin 2φ
=

16⋅(−8)−62

16⋅sin2 90o
+(−8)⋅cos2 90o

−6⋅sin(2⋅90o
)
=−10.25

kNm
m

This is a valid solution at the top!

mud ξ=0 kNm /m mudη=−10.25kNm /m

The results of the design moments based on FEM-Design are in Fig. 9.2.2.15 and 9.2.2.16. The
difference between the hand and FE calculation is 0%.
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Calculation of the required reinforcement based on the valid design moments:

In x (  ξ  ) direction at the bottom:

Sum of the moments:

mud ξ= f cd xc(d x−
xc

2 ) ; 20500=20 xc(175−
xc

2 ) ; xc=5.959 mm

Sum of the forces:

xc f cd=a sξ f yd ; 5.959⋅20=asξ 434.8 ; asξ=0.2741 mm2
/mm=274.1mm2

/m

Fig. 9.2.2.17 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%. 
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Figure 9.2.2.15 – The mud ξ design moment for hyperbolic bending with orthogonal reinforcement [kNm]

Figure 9.2.2.16 – The mud η design moment for hyperbolic bending with orthogonal reinforcement [kNm]
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In y (  η  ) direction at the top:

Sum of the moments:

mudη= f cd xc(d y−
xc

2 ) ; 10250=20 xc(165−
xc

2 ) ; xc=3.136 mm

Sum of the forces:

xc f cd=a sη f yd ; 3.136⋅20=asη 434.8 ; asη=0.1443 mm2
/mm=144.3 mm2

/m

Fig. 9.2.2.18 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%. 
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Figure 9.2.2.17 – The asξ required reinforcement at the bottom for hyperbolic bending with orthogonal
reinforcement [mm2/m]

Figure 9.2.2.18 – The asη required reinforcement at the top for hyperbolic bending with orthogonal
reinforcement [mm2/m]
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Secondly the reinforcement is non-orthogonal and the hand calculation and the comparison are 
the following:

2. Non-orthogonal reinforcement   (  φ  =75  o   between   ξ and η  )

The reinforcement is non-orthogonal and the  ξ direction concides with the local x direction.
Thus y=ϑ.

The moments in the slab (tensor of the applied moments):

m x=mξ=+16 kNm /m

m y=mϑ=mη=−8kNm /m

m xy=mξ ϑ=+6kNm /m

The first invariant of the tensor: m x+m y=+8kNm /m

The design moments (according to the theory book) if the reinforcement (ξ,η) is orthogonal and
their directions concide with the local co-ordinate system (x,y):

Case a)

mud ξ=mξ−mϑ

cosφ
1+cosφ

+mξ ϑ

1−2 cosφ
sinφ

=16+8
cos 75o

1+cos 75o+6
1−2 cos75o

sin 75o =+20.64 kNm /m

mudη=mϑ

1
1+cosφ

+mξ ϑ

1
sinφ

=−8
1

1+cos 75o
+6

1

sin 75o
=−0.144 kNm /m

Invalid solution! Because their have different signs.

Case b)

mud ξ=mξ+mϑ

cosφ
1−cosφ

−mξ ϑ

1+2cosφ
sinφ

=16−8
cos 75o

1−cos 75o−6
1+2cos75o

sin 75o =+3.78kNm /m

mudη=mϑ

1
1−cosφ

−mξ ϑ

1
sinφ

=−8
1

1−cos 75o
−6

1

sin 75o
=−17.01 kNm /m

Invalid solution! Because their have different signs.

Case ξ)

mud ξ=mξ−
mξ ϑ

2

mϑ

=16−
62

−8
=+20.5kNm /m

mudη=0

This is a valid solution at the bottom!

mud ξ=+20.5 kNm /m mudη=0 kNm /m

Case η)
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mud ξ=0

mudη=
mξ mϑ−mξ ϑ

2

mξ sin2φ+mϑ cos2φ−mξ ϑ sin 2φ
=

16⋅(−8)−62

16⋅sin2 75o
+(−8)⋅cos2 75o

−6⋅sin(2⋅75o
)
=−14.40

kNm
m

This is a valid solution at the top!

mud ξ=0 kNm /m mudη=−14.40 kNm /m

The results of the design moments based on FEM-Design are in Fig. 9.2.2.19 and 9.2.2.20. The
difference between the hand and FE calculation is 0%.
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Figure 9.2.2.20 – The mud η design moment for hyperbolic bending with non-orthogonal reinforcement [kNm]

Figure 9.2.2.19 – The mud ξ design moment for hyperbolic bending with non-orthogonal reinforcement [kNm]
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Calculation of the required reinforcement based on the valid design moments:

In x (  ξ  ) direction at the bottom:

Sum of the moments:

mud ξ= f cd xc(d x−
xc

2 ) ; 20500=20 xc(175−
xc

2 ) ; xc=5.959 mm

Sum of the forces:

xc f cd=a sξ f yd ; 5.959⋅20=asξ 434.8 ; asξ=0.2741 mm2
/mm=274.1mm2

/m

Fig. 9.2.2.21 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%. 

In   η   direction at the top:

Sum of the moments:

mudη= f cd xc(d y−
xc

2 ) ; 14400=20 xc(165−
xc

2 ) ; xc=4.423 mm

Sum of the forces:

xc f cd=a sη f yd ; 4.423⋅20=asη 434.8 ; asη=0.2034mm2
/mm=203.4mm2

/m

Fig. 9.2.2.22 shows the required reinforcement in the relevant direction based on FEM-Design
calculation. The difference is less than 1%. 
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Figure 9.2.2.21 – The asξ required reinforcement at the bottom for hyperbolic bending with non-orthogonal
reinforcement [mm2/m]
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Figure 9.2.2.22 – The asη required reinforcement at the top for hyperbolic bending with non-orthogonal
reinforcement [mm2/m]
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